摘要:
Image sensors are provided including a substrate defining a plurality of pixel regions, the substrate having a first surface and a second surface opposite the first surface. The second surface of the substrate is configured to receive light incident thereon and the substrate defines a deep trench extending from the second surface of the substrate toward the first surface substrate and separating the plurality of pixel regions from each other. In each of the plurality of pixel regions of the substrate, a photoelectric conversion region is provided. A gate electrode is provided on the photoelectric conversion region and a negative fixed charge layer covering the second surface of the substrate and at least a portion of a sidewall of the deep trench is also provided. The image sensors further include a shallow device isolation layer on the first surface of the substrate. The shallow device isolation layer defines an active region in each of the pixel regions and the negative fixed charge layer contacts the shallow device isolation layer.
摘要:
According to example embodiments, a photodiode system may include a substrate, and at least one photodiode in the substrate, and a wideband gap material layer on a first surface of the substrate. The at least one photodiode may be between an insulating material in a horizontal plane. According to example embodiments, a back-side-illumination (BSI) CMOS image sensor and/or a solar cell may include a photodiode device. The photodiode device may include a substrate, at least one photodiode in the substrate, a wide bandgap material layer on a first surface of the substrate, and an anti-reflective layer (ARL) on the wide bandgap material layer.
摘要:
An image sensor includes a transfer transistor including a vertical gate portion extending in a depth direction of a substrate in an active region of the substrate and photodiode regions located at positions of different depths with respect to a top surface of the substrate in the active region. At least one color adjustment path extends between at least two photodiode regions of the photodiode regions and provides a charge movement path between the at least two photodiode regions.
摘要:
A transfer gate is formed such that both end portions thereof in a second direction, which crosses a first direction in which a photodiode and a floating diffusion layer that is formed with a distance from the photodiode are arranged, are located inside boundaries with element isolation regions. Channel stopper layers are formed on surface portions of a device region in the vicinity of lower parts of both end portions of the transfer gate in the second direction in such a manner to extend to the boundaries with the element isolation regions.
摘要:
Image sensors are provided including a substrate defining a plurality of pixel regions, the substrate having a first surface and a second surface opposite the first surface. The second surface of the substrate is configured to receive light incident thereon and the substrate defines a deep trench extending from the second surface of the substrate toward the first surface substrate and separating the plurality of pixel regions from each other. In each of the plurality of pixel regions of the substrate, a photoelectric conversion region is provided. A gate electrode is provided on the photoelectric conversion region and a negative fixed charge layer covering the second surface of the substrate and at least a portion of a sidewall of the deep trench is also provided. The image sensors further include a shallow device isolation layer on the first surface of the substrate. The shallow device isolation layer defines an active region in each of the pixel regions and the negative fixed charge layer contacts the shallow device isolation layer.
摘要:
A CMOS image sensor includes a substrate and at least one device isolation region in the substrate and defining first and second pixel regions and first and second active portions in each of the first and second pixel regions. A reset and select transistor gates are disposed in the first pixel region, while a source follower transistor gate is disposed in the second pixel region, such that pixels in the first and second pixel regions share the reset, select and source follower transistors. A length of the source follower transistor gate may be greater than lengths of the reset and selection transistor gates.
摘要:
A pinned photodiode structure with peninsula-shaped transfer gate which decrease the occurrence of a potential barrier between the photodiode and the floating drain, prevents loss of full well capacity (FWC) and decreases occurrences of image lag.
摘要:
A solid-state image sensor having a well of a first conductivity type; a photoelectric conversion region having a second conductivity type formed in the well storing charges obtained from a photoelectric conversion; a drain region having the second conductivity type formed in the well apart from a surface of the well; and a gate electrode formed on the surface of the well via a gate insulator, the gate electrode transferring the charges from the photoelectric conversion region to the drain region. Alternatively, a transistor includes a first semiconductor region having a first conductivity type; second and third semiconductor regions having a second conductivity type formed in the first semiconductor region, the second and third semiconductor regions being separated from each other by a portion of the first semiconductor region serving as a channel region; an insulator layer provided on a surface of the first semiconductor region in contact with the channel region; a gate electrode provided on the insulator layer; and the first semiconductor region includes a shield semiconductor region of the first conductivity type disposed between the surface of the first semiconductor region and at least one of the second and third semiconductor regions such that the at least one of the second and third semiconductor regions is sandwiched between the shield region and the first semiconductor region.
摘要:
Image sensors are provided including a substrate defining a plurality of pixel regions, the substrate having a first surface and a second surface opposite the first surface. The second surface of the substrate is configured to receive light incident thereon and the substrate defines a deep trench extending from the second surface of the substrate toward the first surface substrate and separating the plurality of pixel regions from each other. In each of the plurality of pixel regions of the substrate, a photoelectric conversion region is provided. A gate electrode is provided on the photoelectric conversion region and a negative fixed charge layer covering the second surface of the substrate and at least a portion of a sidewall of the deep trench is also provided. The image sensors further include a shallow device isolation layer on the first surface of the substrate. The shallow device isolation layer defines an active region in each of the pixel regions and the negative fixed charge layer contacts the shallow device isolation layer.
摘要:
A solid-state image sensor having a well of a first conductivity type; a photoelectric conversion region having a second conductivity type formed in the well storing charges obtained from a photoelectric conversion; a drain region having the second conductivity type formed in the well apart from a surface of the well; and a gate electrode formed on the surface of the well via a gate insulator, the gate electrode transferring the charges from the photoelectric conversion region to the drain region. Alternatively, a transistor includes a first semiconductor region having a first conductivity type; second and third semiconductor regions having a second conductivity type formed in the first semiconductor region, the second and third semiconductor regions being separated from each other by a portion of the first semiconductor region serving as a channel region; an insulator layer provided on a surface of the first semiconductor region in contact with the channel region; a gate electrode provided on the insulator layer; and the first semiconductor region includes a shield semiconductor region of the first conductivity type disposed between the surface of the first semiconductor region and at least one of the second and third semiconductor regions such that the at least one of the second and third semiconductor regions is sandwiched between the shield region and the first semiconductor region.