摘要:
An electrically non-conductive, nanoparticulate membrane comprising nanoparticles of at least one inorganic oxide of an element selected from Group IA, IIA, IIIA, IVA, IB, IIB, IIIB, IVAB, VB, VIB, VIIB or VIIIB of the Periodic Table, and wherein an oxidoreductase enzyme and a polymeric redox mediator capable of transferring electrons are diffusibly dispersed in said nanoparticulate membrane.
摘要:
Embodiments are directed to an Autonomous System-based Edge Marking (ASEM) for Internet Protocol (IP) traceback. In particular, the embodiments are a system and a method for IP traceback that receives one or more packets at routers; inscribes packets only at marking routers with autonomous system (AS) level and marking information; and forwards the marked packets to edge routers and other routers for verification. Additionally the packets are marked based on a probability measure and Border Gateway Protocol (BGP) routing table information is the AS level information used for marking and verification.
摘要:
A sensor for determining the presence of an analyte in a test sample, said sensor comprising a nanoparticulate membrane comprising nanoparticles of at least one inorganic oxide of an element selected from Group IA, IIA, IIIA, IVA, IB, IIB, IIIB, IVAB, VB, VIB, VIII3 or VIIII3 of the Periodic Table, and wherein an oxidoreductase and an electrochemical activator are diffusibly dispersed in said nanoparticulate membrane.
摘要:
There is provided an electrochemical assay method for detecting a target molecule, for example a protein, in a sample, which involves the use of a protective monolayer and a redox polymer to form a bilayer immobilized on an electrode. The monolayer protects the electrode from non-specific adherence of reagents, particular proteins, to the electrode while simultaneously providing a surface that can be functionalized to immobilize a capture molecule and that can interact with the redox polymer.
摘要:
A method for producing a control output is described. The method includes identifying an error signal and decomposing the error signal into a plurality of signal components. The signal components are determined based on a plurality of orthogonal functions representing multi-resolution decomposition properties. The method further includes transforming each signal component. The transformed signal components are summed to determine a control signal.
摘要:
Controller scaling and parameterization are described. Techniques that can be improved by employing the scaling and parameterization include, but are not limited to, controller design, tuning and optimization. The scaling and parameterization methods described here apply to transfer function based controllers, including PID controllers. The parameterization methods also applies to state feedback and state observer based controllers, as well as linear active disturbance rejection controllers. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the application. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
In an embodiment, a transistor arrangement is provided. The transistor arrangement comprises a nanowire including a first nanowire region and a second nanowire region; a first gate contact disposed over the first nanowire region; an insulating region disposed over the second nanowire region; a second gate contact disposed over the insulating region; wherein the first nanowire region and the first gate contact forms a part of an enhancement mode transistor and the second nanowire region, the insulating region and the second gate contact forms a part of a depletion mode transistor. A method of forming a transistor arrangement may also be provided. Also contemplated is a transistor and a method for forming said transistor, where the transistor comprises a nanowire and a gate contact, where the gate contact is formed by directly writing the gate contact onto a region of the nanowire.
摘要:
Embodiments are directed toward a method for Behavior-based Traffic Differentiation (BTD) that initially receives incoming packets and performs traffic classification to determine the protocol of the incoming packets. In addition, BTD performs bandwidth division/allocation to further support traffic classification amongst non-TCP traffic such as UDP and ICMP. For TCP traffic, the method for BTD determines whether a TCP connection has been established and performs at least one of rate limiting, waiting time reduction for half-open connections, and incrementing backlog queue size when the TCP connection has not been established. If the TCP connection has been established successfully, the method for BTD further includes proactive tests for traffic differentiation which identify normal traffic, which is admitted, and attack traffic, which is dropped.