摘要:
A sensor for determining the presence of an analyte in a test sample, said sensor comprising a nanoparticulate membrane comprising nanoparticles of at least one inorganic oxide of an element selected from Group IA, IIA, IIIA, IVA, IB, IIB, IIIB, IVAB, VB, VIB, VIII3 or VIIII3 of the Periodic Table, and wherein an oxidoreductase and an electrochemical activator are diffusibly dispersed in said nanoparticulate membrane.
摘要:
An electrically non-conductive, nanoparticulate membrane comprising nanoparticles of at least one inorganic oxide of an element selected from Group IA, IIA, IIIA, IVA, IB, IIB, IIIB, IVAB, VB, VIB, VIIB or VIIIB of the Periodic Table, and wherein an oxidoreductase enzyme and a polymeric redox mediator capable of transferring electrons are diffusibly dispersed in said nanoparticulate membrane.
摘要:
A microfluidic separation system, which comprises a magnetic separator, which itself comprises a magnetic energy source; first and second magnetically conductive members leading from the magnetic energy source and having respective terminal ends that are separated by a gap over which a magnetic field is applied due to the magnetic energy source. The separation system further comprises a microfluidic chip for insertion into the gap, which comprises a body defining channels on respective faces of the body; and an exterior lining that seals the plurality of channels to allow separate test sample volumes to circulate in at least two of the channels. Upon insertion of the chip into the gap, a first test sample volume is confined to circulating closer to the terminal end of the first member and a second test sample volume is confined to circulating closer to the terminal end of the second member.
摘要:
An integrated coil assembly (10), a multi-phase linear motor having the integrated coil assembly (10) and a method (100) for forming the integrated coil assembly (10) are described. The integrated coil assembly (10) has multi-phase coils with each multi-phase coil (20) having a number of coil loops based upon the number of electrical phases of current required by the multi-phase linear motor. The coil loops of different multi-phase coils are interweaved at two opposing portions (11,12) and are substantially parallel at two other opposing portions (13,14). In the method (100), different wire dispensers wind coil loops for different electrical phase for each multi-phase coil (20). However, the same wire dispenser winds coil loops that are for the same electrical phase for different multi-phase coils (20). The coil loops for each multi-phase coil (20) are wound before the coil loops of another multi-phase coil (20) are wound.
摘要:
A biochip (100) for lysing and/or cell separation is formed to provide a sealed chamber for biological fluid. A conductive layer (140) bonded between upper (130) and lower (150) insulating layers is etched to form a microfluidic channel (250) between two electrodes (190, 200). The microfluidic channel connects a fluid inlet (11) and fluid outlet (120). The electrodes (190, 200) form an un-even electric field in the channel (250) to generate a dielectrophoretic force on the cells/particles within the sample fluid. A voltage source applies a suitable voltage to separate and/or lyse cells within the fluid.
摘要:
The present invention relates to methods and system for tissue cell and/or nucleic acid molecule isolation. In particular, to a method for isolating nucleic acid molecules from tissue samples comprising: i) treating a tissue sample with at least one enzyme for tissue dissociation; ii) adding a lytic solution; and iii) isolating nucleic acid molecules. The method further comprises a step of applying hydrodynamic shear force to the product of step (i). The methods and/or system according to the invention are adaptable for use with micromechanical and/or automated processes.
摘要:
The present invention provides compositions comprising a metal amidoborane and an amine, and processes for preparing the metal amidoborane compositions. In particular, the process comprises contacting ammonia borane with a metal amide in the presence of an amine solvent to form the metal amidoborane composition. The invention also provides methods for generating hydrogen, wherein the method comprises heating the metal amidoborane composition such that hydrogen is released.
摘要:
A micro-fluidic device comprises a body. The body defines pneumatic ports, chambers for receiving liquids, and a connecting conduit. Each port is sealed with a seal and is shaped to couple to a pneumatic conduit through the seal. At least some of the chambers each have a top opening and a bottom opening. The top openings are in fluid communication with corresponding ports. The bottom openings are in fluid communication with one another through the connecting conduit, which is above the bottom openings. Selective application of pneumatic pressures to the chambers through the pneumatic conduits can transfer a liquid from one chamber to another through the connecting conduit, for example, for processing bio-samples within the device.
摘要:
The present invention provides compositions comprising a metal amidoborane and an amine, and processes for preparing the metal amidoborane compositions. In particular, the process comprises contacting ammonia borane with a metal amide in the presence of an amine solvent to form the metal amidoborane composition. The invention also provides methods for generating hydrogen, wherein the method comprises heating the metal amidoborane composition such that hydrogen is released.
摘要:
A microfluidic separation system, which comprises a magnetic separator, which itself comprises a magnetic energy source; first and second magnetically conductive members leading from the magnetic energy source and having respective terminal ends that are separated by a gap over which a magnetic field is applied due to the magnetic energy source. The separation system further comprises a microfluidic chip for insertion into the gap, which comprises a body defining channels on respective faces of the body; and an exterior lining that seals the plurality of channels to allow separate test sample volumes to circulate in at least two of the channels. Upon insertion of the chip into the gap, a first test sample volume is confined to circulating closer to the terminal end of the first member and a second test sample volume is confined to circulating closer to the terminal end of the second member.