Abstract:
A printing head assembly with integrated purge mechanism is disclosed. The printing head assembly comprises: (a) a liquid dispensing head comprising one or more dispensing nozzles enclosed in a nozzle plate, driven by at least first and second pressures, and (b) a shielding mask including an opening in front of the one or more nozzles, wherein the opening being configured such that when printing liquid is dispensed from the head driven by the first pressure, the liquid being dispensed in pulses through the opening in the shielding mask, and (ii) when purge printing liquid is dispensed from the head driven by the second pressure, the liquid being drawn to a capillary gap formed between the shielding mask and the nozzle plate thereby removing the purge printing liquid from the nearby nozzles.
Abstract:
An ink composition for use as a support ink in three dimensional (3D) printing processes comprises a dispersion of solid particles in liquid carrier, compatible with an inkjet print head, wherein after removing the liquid carrier, the solid particles serve as support material for a Three Dimensional (3D) printed object, wherein the support material is separable from the 3D printed object.
Abstract:
Embodiments of the invention are directed to a method of printing lines. A method may include positioning a plurality of print units according to a predefined spacing parameter. A method may include depositing material on a substrate by a plurality of print units to form a respective plurality of parallel lines according to a predefined spacing parameter. A printing unit may be positioned at an angle with respect to a predefined scan direction such that a predefined width of a printed line is achieved. A substrate may be rotated between scans such that a plurality of lines in a respective plurality of directions is printed in a scan direction.
Abstract:
A printing device for dispending material on a heated substrate is provided. The device may include a printing head having one or more nozzles and a heat shield that partially masks a side of the printing head that faces the heated substrate when printing so as to reduce heat transfer from the substrate to the printing head. The shield includes a slot aligned with the one or more nozzles to enable passage of material from the one or more nozzles to the heated substrate.
Abstract:
Some aspects of the invention are related to a solar cell, for producing electricity from solar radiation. The solar cell may include a substrate, for example, polycrystalline silicon and an electrically conductive structure disposed on the substrate. The electrically conductive structure may include a bus bar and one or more finger electrodes positioned such that at least a portion of a finger electrode overlaps the bus bar.
Abstract:
A printing head assembly with integrated purge mechanism is disclosed. The printing head assembly comprises: (a) a liquid dispensing head comprising one or more dispensing nozzles enclosed in a nozzle plate, driven by at least first and second pressures, and (b) a shielding mask including an opening in front of the one or more nozzles, wherein the opening being configured such that when printing liquid is dispensed from the head driven by the first pressure, the liquid being dispensed in pulses through the opening in the shielding mask, and (ii) when purge printing liquid is dispensed from the head driven by the second pressure the liquid being drawn to a capillary gap formed between the shielding mask and the nozzle plate thereby removing the purge printing liquid from the nearby nozzles.
Abstract:
Embodiments of the invention are directed to a method of printing lines. The method may include depositing material on a substrate from a plurality of nozzles to form a multi-layered line of a desired cross section area or a desired height by dispensing the material in at least two layers in a single scan. Each layer may be printed by different nozzles and the number of layers in the line is determined based on the desired cross section area or height.
Abstract:
Ti ink compositions for printing, such as ink jet printing, are disclosed. The ink compositions comprise a liquid dispersion of Ti hydride powder having a mean particle size of less than 10.0 microns; a liquid carrier; and at least one surfactant. Methods of making and using the disclosed inks are also disclosed. For example, a finished Ti product can be produced by printing the disclosed ink composition, such as by ink jet printing, to form a green article, heating the green article to dehydrogenate it and form a Ti containing part. The method may further comprise sintering the Ti containing part to produce a sintered Ti product. In an embodiment, the method comprises printing one or more support materials for the ink composition, that comprises solid particles of a metal oxide, a metal carbide, a metal nitride, a polymer, or combinations thereof.
Abstract:
3D (three-dimensional) ink-jet printing includes techniques for evaporating a carrier liquid during printing while at least a portion of dispersant remains in the printed layer; evaporating dispersant in a first layer prior to sintering the first layer and/or prior to printing a second layer; leveling an upper-layer of a printed object using a horizontal roller; and printing layers of an object, each layer with both object and support portions, resulting in an object with support, in particular, support for negative angles and molds.
Abstract:
A method for evaluating performance of a plurality of nozzles of a printing head includes repeatedly operating each of the nozzles to print test marks on a surface of a substrate, each of the test marks printed by that nozzle being printed at a different time. At least once during the repeated operation of each of the nozzles, at least some of the test marks are erased from the surface. The test marks that were printed by that nozzle are inspected for a feature that is indicative of the performance of that nozzle.