Abstract:
Provided herein are FDC-SP polypeptides and methods of using such polypeptides. Methods include, but are not limited to, altering IgA concentration in a subject, treating a subject having signs of a disorder that includes excessive IgA production, identifying a compound that decreases the concentration of IgA in an animal, and identifying a compound that treats a condition associated with increased levels of IgA. Also provided herein is an animal that has decreased expression of an endogenous FDC-SP coding sequence. The animal may develop pathophysiological features of IgA nephropathy, and/or may display increased IgA in serum, saliva, bronchoalveolar lavage fluid, or a combination thereof; increased IgA expressing B lymphocytes in circulation, lymphoid tissue, or a combination thereof; or increased IgA production in vitro by isolated B lymphocytes
Abstract:
The invention provides genetically modified non-human animals that express chimeric human/non-human MHC I polypeptide and/or human or humanized β2 microglobulin polypeptide, as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified animals and methods of making the same. Methods of using the genetically modified animals to study various aspects of human immune system are provided.
Abstract:
The present disclosure provides methods and uses of Tie2 binding and/or activating agents. In particular, the present disclosure provides methods and uses for inhibiting the expansion of colony forming unit-granulocytes, reducing eosinophils and/or basophils, for treating allergic disease or response or eosinophil/basophil associated condition and for reducing inflammatory cytokine and/or chemokine levels.
Abstract:
The invention provides a genetically modified non-human animal that comprises in its genome unrearranged T cell receptor variable gene loci, as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified non-human animal and methods of making the same. Various methods of using the genetically modified non-human animal are also provided.
Abstract:
The present application relates to apoptotic anti-IgE antibodies, nucleic acid encoding the same, therapeutic compositions thereof, and their use in the treatment of IgE-mediated disorders.
Abstract:
The present application relates to apoptotic anti-IgE antibodies, nucleic acid encoding the same, therapeutic compositions thereof, and their use in the treatment of IgE-mediated disorders.
Abstract:
Genetically modified non-human animals and methods and compositions for making and using them are provided, wherein the genetic modification comprises a deletion of the endogenous low affinity FcγR locus, and wherein the mouse is capable of expressing a functional FcRγ-chain. Genetically modified mice are described, including mice that express low affinity human FcγR genes from the endogenous FcγR locus, and wherein the mice comprise a functional FcRγ-chain. Genetically modified mice that express up to five low affinity human FcγR genes on accessory cells of the host immune system are provided.
Abstract:
A mouse with a humanization of the mIL-3 gene and the mGM-CSF gene, a knockout of a mRAG gene, and a knockout of a mIl2rg subunit gene; and optionally a humanization of the TPO gene is described. A RAG/Il2rg KO/hTPO knock-in mouse is described. A mouse engrafted with human hematopoietic stem cells (HSCs) that maintains a human immune cell (HIC) population derived from the HSCs and that is infectable by a human pathogen, e.g., S. typhi or M. tuberculosis is described. A mouse that models a human pathogen infection that is poorly modeled in mice is described, e.g., a mouse that models a human mycobacterial infection, wherein the mouse develops one or more granulomas comprising human immune cells. A mouse that comprises a human hematopoietic malignancy that originates from an early human hematopoietic cells is described, e.g., a myeloid leukemia or a myeloproliferative neoplasia.
Abstract:
Transgenic immunodeficient non-human animals according to embodiments of the present invention are described which include in their genome a nucleic acid encoding xenogeneic Stem Cell Factor operably linked to a promoter. Administration of xenogeneic hematopoetic stem cells to the inventive transgenic animals results in engraftment of the xenogeneic hematopoetic stem cells and xenogeneic leukocytes are produced in the animals, without conditioning such as without conditioning by irradiation and without conditioning by a radiomimetic agent.