摘要:
Catalyst regeneration processes are provided that can include providing a mixture including a liquid phase catalyst and a halogenation exchange reagent, and exposing the mixture to a halogen until the halogen is essentially no longer consumed by the mixture. The catalyst can include MaX(a-b)Yb, wherein M represents a metal, X represents a first halogen, Y represents a second halogen different from the first halogen, “a” represents the oxidation state of the metal, and “b” is an integer less than or equal to “a”. M can be Sb, the X can be Cl, and the Y can be F.
摘要:
Methods for treating or rejuvenating a spent catalyst are disclosed. Such methods can employ a step of halogenating the spent catalyst, followed by decoking the halogenated spent catalyst. The halogenation step can utilize fluorine and chlorine together, or fluorine and chlorine can be applied sequentially.
摘要:
A method of reactivating a spent catalyst comprising a metal and a catalyst support, the method comprising redispersing the metal in the spent catalyst to produce a redispersed spent catalyst, contacting the redispersed spent catalyst with a reactivating composition to produce a redispersed, reactivated spent catalyst, and thermally treating the redispersed, reactivated spent catalyst to produce a reactivated catalyst. A method comprising employing a fresh aromatization catalyst in one or more reaction zones for a time period sufficient to produce a spent catalyst, reducing the amount of carbonaceous material associated with the spent catalyst to produce a decoked spent catalyst, contacting the decoked spent catalyst with a redispersing composition to produce a decoked redispersed spent, contacting the decoked redispersed spent catalyst with a reactivating composition to produce a decoked redispersed reactivated spent catalyst, and thermally treating the decoked, reactivated spent catalyst to produce a reactivated catalyst.
摘要:
A method of reactivating a spent catalyst comprising a metal and a catalyst support, the method comprising redispersing the metal in the spent catalyst to produce a redispersed spent catalyst, contacting the redispersed spent catalyst with a reactivating composition to produce a redispersed, reactivated spent catalyst, and thermally treating the redispersed, reactivated spent catalyst to produce a reactivated catalyst. A method comprising employing a fresh aromatization catalyst in one or more reaction zones for a time period sufficient to produce a spent catalyst, reducing the amount of carbonaceous material associated with the spent catalyst to produce a decoked spent catalyst, contacting the decoked spent catalyst with a redispersing composition to produce a decoked redispersed spent, contacting the decoked redispersed spent catalyst with a reactivating composition to produce a decoked redispersed reactivated spent catalyst, and thermally treating the decoked, reactivated spent catalyst to produce a reactivated catalyst.
摘要:
A process for the activation of a fluorination catalyst in which a catalyst precursor compound, supported or unsupported is first dried and thereafter activated by exposure to an activating agent at a pressure greater that about 100 psig and a temperature grater than about 100° C. The process is particularly suited to the activation of chromium (III) compounds, such as Cr2O3. The resulted dry, high-pressure activated catalyst was found to provide increase fluorination conversion, with higher selectivity of the desired product.
摘要翻译:一种氟化催化剂的活化方法,其中负载或未负载的催化剂前体化合物首先被干燥,然后通过在高于约100psig的压力和高于约100℃的温度下暴露于活化剂而活化。 方法特别适用于铬(III)化合物如Cr 2 O 3的活化。 发现所得到的干燥的高压活化催化剂提供增加的氟化转化率,所需产物的选择性更高。
摘要:
Catalyst regeneration processes are provided that can include providing a mixture including a liquid phase catalyst and a halogenation exchange reagent, and exposing the mixture to a halogen until the halogen is essentially no longer consumed by the mixture. The catalyst can include MaX(a-b)Yb, wherein M represents a metal, X represents a first halogen, Y represents a second halogen different from the first halogen, “a” represents the oxidation state of the metal, and “b” is an integer less than or equal to “a”. M can be Sb, the X can be Cl, and the Y can be F.
摘要:
Catalyst preparation and regeneration processes are provided that can include providing a catalyst comprising a first halogen and exposing the catalyst to a reagent comprising a second halogen different from the first halogen. Halocarbon production processes are provided that can include providing a first halocarbon and reacting a halogen exchange reagent and the first halocarbon within a reactor to produce a second halocarbon, the second halocarbon can be a homohalogenated carbon and be essentially free of unsaturated halocarbons. Halocarbon production systems are provided that can include: a halocarbon reagent supply coupled to a reactor; a catalyst supply coupled to the reactor; a halogenation exchange reagent coupled to the reactor; a catalyst regeneration reagent coupled to the reactor; an elemental halogen recovery assembly coupled to the reactor; a catalyst regeneration reagent recovery assembly coupled to the reactor; and a halocarbon recover assembly coupled to the reactor.
摘要:
A method of recovering halogen-containing materials from the cyclic catalyst regeneration operation of a catalytic hydrocarbon conversion process is disclosed. The method uses an arrangement of beds of adsorbent to maintain the halogen-containing materials within a circulating regeneration circuit.
摘要:
In order to regenerate the activity of a catalyst for gas phase fluorination the spent catalyst is treated with chlorine and hydrogen fluoride, at a temperature of between 250.degree. and 450.degree. C.
摘要:
PROCESS FOR REGENERATING FLUORINATION CATALYSTS OF THE CHROMOXY-FLUORIDE GROUP, WHEREIN HYDROGEN FLUORIDE IS PASSED OVER THE CATALYST AT 100*-600*C. IN AN AMOUNT OF AT LEAST 5 G. PER LITER OF CATALYST PER HOUR. BY THE PROCESS THE INITIAL ACTIVITY OF SAID CATALYSTS CAN BE RESTORED IN AN ECONOMIC WAY.