Abstract:
A method for monitoring at least the bending strain of at least one electric cable provided with at least one peripheral mechanically non-symmetric strength member is provided.
Abstract:
A travelling cable of an elevator, more particularly of a passenger transport elevator and/or freight transport elevator, includes a protective envelope, conductors for transmitting electrical energy and data between the elevator car and the elevator hoistway, and one or more load-bearing bearer parts of essentially the length of the travelling cable for fixing the travelling cable at its first end to the elevator car and at its second end to the elevator hoistway, and which bearer part includes glass-fiber reinforcements and/or aramid-fiber reinforcements and/or carbon-fiber reinforcements and/or polybenzoxazole-fiber reinforcements and/or polyethylene-fiber reinforcements and/or nylon-fiber reinforcements in a polymer matrix material. An elevator includes the travelling cable.
Abstract:
A rope structure comprising a core component comprising core fibers combine to form a first rope structure and a first cover component comprising first cover strands comprising first cover fibers within a first matrix material. The first cover strands are arranged around at least a portion of the core component.
Abstract:
A method for monitoring at least the bending strain of at least one electric cable provided with at least one peripheral mechanically non-symmetric strength member is provided.
Abstract:
In order to improve visibility and hence to reduce the risk of accidents, a load-carrying rope, for example a wire rope, is equipped with a number of luminous elements. A luminous element may in this case assume the position of a wire or of a braid, may be integrated in an insert, or may be guided in the spaces between wires or braids and preferably within the theoretical rope circumference. The luminous element may also itself be composed of luminous elements which are twisted together, spiralled, or laid in so as to form braids. For strain relief, the luminous elements may be equipped with a reinforcement in the form of a strand, or with a mesh.
Abstract:
A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.
Abstract:
A crush-resistant tube for a plastics packaged optical fibre (1, 2) is formed by helically stranding together five or more non-circular cross-section wires (3) which are created from circular cross-section wires during the stranding operation.
Abstract:
A cable comprises a first and a second thimble (2, 4), and at least one main yarn (6) and an auxiliary yarn (7). The first and the second thimble are provided at opposite ends of the cable. The at least one main yarn (6) and the auxiliary yarn (7) each forms turns around the first and second thimble (2, 4). Each thimble (2, 4) comprises a bearing surface (40), and holds a stack (19) of layers (10) of turns of the main yarn (6). A stack (119) of turns of the auxiliary yarn (7) comprising at least a first layer (13) of turns of the auxiliary yarn (7) lies on the bearing surface (40) of the respective thimble (2, 4).
Abstract:
A mooring member comprises a rope configured for extending between a vessel floating in a body of water and an anchoring device. The mooring member comprises a plurality of functional elements, wherein a first functional element is wound onto at least a portion of the rope, a second functional element is wound onto the first functional element, and so on, until an outermost functional element is wound onto a second-to-outermost functional element. The functional elements are wound in a helical configuration, and are configured to provide at least one of the following functions: damage protection, buoyancy, optical detection, sonar detection, stiffness control, and anti-fouling.
Abstract:
A coated PC steel stranded cable includes: a stranded cable in which a plurality of elemental wires each composed of steel are twisted together; an anti-corrosive coating having an outer circumferential portion that coats an outer circumference of the stranded cable; an outer coating that coats an outer circumference of the anti-corrosive coating; and an optical fiber provided at a position inwardly of an outer circumferential surface of the outer coating and corresponding to a strand groove in the stranded cable so as to follow expansion and contraction of the stranded cable.