Abstract:
A system and method for aligning a light beam in a spectroscopic measuring device such as a pump-probe device is provided. The system and method comprise a first motorized mirror (66b) positioned to receive and transmit a light beam (60a); a second motorized mirror (66c) positioned relative to the first mirror to receive the light beam from the first mirror and transmit the light beam to a delay line (64); a third mirror (78) positioned to receive the light beam from the delay line and transmit said light beam to a detector (80); and a computer-based processor (82) in communication with the detector and the first and second mirrors, the processor configured to a) receive and process data relating to the light beam from the detector, and b) cause movement of the first and second mirrors to change an angle of the mirrors based on the data relating to the light beam.
Abstract:
A low-voltage alternating current-based LED light with built-in cooling and automatic or manual dimming. As it is self-cooled with fan failure protection, the light can be safely run in conditions that are near-hostile to its operation, with little possibility of damage. The light is movable along the XY axes of a grid system and can be either fixed in position in the Z axis or can be movable up and down the Z axis. The light can be equipped with either manual dimming using a standard potentiometer, or with automatic dimming via sensors and local network connectivity. The device prevents line-voltage electric shocks as the input voltage is low-voltage AC; in embodiments, about the same voltage as a doorbell, and the input current is 3 A. The device is also self-cooled, and will shut down if its fan is not running so as to prevent thermal overloads.
Abstract:
A method of reducing variation in optical power levels across a group of light emitting diodes includes testing each respective one of the light emitting diodes to determine an optical power level produced by that light emitting diode when connected to an electrical power source. During testing, the electrical power source delivers a substantially identical amount of electrical current to each respective one of the light emitting diodes. The optical power levels from the test all fall within a first range of values. The method includes connecting an electrical resistance in parallel with at least some of the light emitting diodes to reduce an amount of optical power produced by those light emitting diodes. After the electrical resistances are connected, all of the optical power levels produced by the light emitting diodes fall within a second range that is narrower than the first range.
Abstract:
Method for correction of the temperature dependency of a light quantity L emitted by a light emitting diode (LED), being operated in pulsed mode with substantially constant pulse duration tP, and measured in a light detector, using a predetermined parameter X, correlated to the temperature T of the LED in a predetermined ratio, whereby a correction factor K is determined from the parameter X, preferably using a calibration table, especially preferred using an analytic predetermined function, whereby the measured emitted light quantity L is corrected for the temperature contingent fluctuations of the emitted light quantity, whereby the parameter X is determined from at least two output signals of the LED, which are related to each other in a predetermined manner.
Abstract:
Method for correction of the temperature dependency of a light quantity L emitted by a light emitting diode (LED), being operated in pulsed mode with substantially constant pulse duration tP, and measured in a light detector, using a predetermined parameter X, correlated to the temperature T of the LED in a predetermined ratio, whereby a correction factor K is determined from the parameter X, preferably using a calibration table, especially preferred using an analytic predetermined function, whereby the measured emitted light quantity L is corrected for the temperature contingent fluctuations of the emitted light quantity, whereby the parameter X is determined from at least two output signals of the LED, which are related to each other in a predetermined manner.
Abstract translation:用于校正由发光二极管(LED)发射的光量L的温度依赖性的方法,其以脉冲模式以基本上恒定的脉冲持续时间t P P运行,并且在光检测器中测量,使用 预定参数X,以预定比例与LED的温度T相关,由此,优选使用校准表,从参数X确定校正因子K,特别优选使用分析预定功能,由此测量的发射光量 根据发射光量的温度偶然波动来校正L,由此根据预定方式彼此相关的LED的至少两个输出信号来确定参数X.
Abstract:
A monitoring system for adjusting a light source for a counting cell signal in a counting and dispensing system, which light deteriorates over time as a result of dust accumulation from the handling of pills, capsules, and tablets. The monitoring system uses electronics to adjust the light relative to the dust accumulation, thus maintaining an accurate counting cell signal, so that the system can continue to function. In this respect, the monitoring system provides for longer intervals between required maintenance operations, and therefore reduces the cost of operation.
Abstract:
A method and apparatus for checking the calibration of analyzers employing radiant energy is disclosed. The invention embodies changing the radiant energy source color temperature by a precise increment and adjusting the span to reflect the predetermined amount of differential absorbance between reference and analytical interference filters which would result from said increment of change in source color temperature. The invention is particularly useful when employing radiant energy in the ultraviolet, visible and infrared spectra. The invention eliminates the need for standard liquid or gaseous calibration solutions or special optical calibration filters.
Abstract:
Phase and amplitude balance adjustment are provided for a gas analyzer of the type in which two infrared beams are generated, one passed through a cell containing a standard and the other through a cell containing a sample gas, constituents in which are to be detected and measured; and there is a detector which compares the energy absorption in the two cells to provide a measure of the gas content. In this type of gas detector there is a chopper consisting of a rotating shutter with two sectors which rotate in front of two apertures through which infrared beams are transmitted from two different infrared beam generators. Phase adjustment is accomplished mechanically by physically moving a mounting plate carrying the two infrared beam generators with respect to the position of the apertures. Amplitude balance adjustment is accomplished by adjusting the relative electrical energy supplied to the two infrared beam generators.
Abstract:
An absorptiometer in which a lamp source is arranged to direct radiation onto a radiation-sensitive device, means being provided for measuring an electrical output from the device and thereby deriving a measure of the optical density of a sample when located in the path between the source and the device, wherein for initial setting purposes, when a standard sample is located in the said path, means are provided for automatically varying the energization of the lamp source until the output of the radiation-sensitive device is set to a pre-determined value, and wherein, for subsequent measurement purposes, means are provided for maintaining the energization of the lamp source at the previously set value.
Abstract:
Before traversing the area in which conditions are to be measured, a portion of a modulated luminous measuring beam is branched off and directed to a photoelectric detector. A portion of a modulated luminous comparison beam also is branched off and sent to the detector. The strengths of the beams received by the detector are compared and used to control the intensity of one or both of the beam sources in a manner such that the ratio of intensities of the two sources is constant.