Abstract:
A method for interrogating a passive sensor comprising at least one piezoelectric resonator includes the following steps: the identification of the characteristic width of the resonant frequency band of the resonator; the determination of a scan interval equal to a third of the measured bandwidth; a first series of three interrogation measurements with signals respectively at a first frequency, at a second frequency and at a third frequency making it possible to define a first resonance value, a second resonance value and a third resonance value; the determination by a parabolic fitting operation of the resonator response curve on the basis of said first, second and third resonance values, so as to calculate a first value of the frequency in real time of the resonator. The invention also relates to an electronic device for interrogating a passive sensor comprising at least one piezoelectric resonator and comprising a micro-controller implementing the interrogation method of the invention.
Abstract:
A method of collective fabrication of remotely interrogatable sensors, each sensor comprising at least one first resonator and one second resonator, each resonator comprising acoustic wave transducers designed such that they exhibit respectively a first and a second operating frequency, is provided. The method comprises the fabrication of a first series of first resonators (RT1i) exhibiting a first resonant frequency at ambient temperature (f1i) and a first static capacitance (C1i); the fabrication of a second series of second resonators (RT2j) exhibiting a second resonant frequency at ambient temperature (f2j) and a second static capacitance (C2j); a series of electrical measurements of the set of the first series of first resonators and of the set of the second series of second resonators, so as to determine first pairs (f1i, C1i) and second pairs (f2j, C2j) of resonant frequency and of capacitance of each of the first and second resonators; and a series of matchings of a first resonator (RT1i) and of a second resonator (RT2j) according to the aggregate of the following two criteria: the dispersion in the difference in resonant frequency (f1i−f2j) is less than a first threshold value (Sf) and the dispersion in the difference in static capacitance (C1i−C2j) is less than a second threshold value (Sc).
Abstract:
A method and apparatus for measuring the force applied by a first member coupled to a second member by a connecting body, by: transmitting a cyclically-repeating energy wave through the connecting body from a first location thereon to a second location thereon; measuring the transit time of the cyclically-repeating energy wave from the first location to the second location; and utilizing the measured transit time to produce a measurement of the force. In the preferred described embodiment, the connecting body is a fastening plate which fastens a drive shaft to a driven shaft and measures the torque output of the drive shaft.
Abstract:
A silicon or quartz wafer for forming a SAW device is the subject of grinding and lapping operation to form its basic shape. The opposing surfaces, as well as the edges extending therebetween, are the polished to reduce the number and size of defects in the surfaces. Metal is deposited onto one of the opposing surfaces which, in use, will be under compression, to form electronic components thereon, and a multi-metallic coating having an outer layer formed of gold is applied to the other surface to form a solder pad by means of which the wafer may be fastened to a shaft or the like by soldering. Martensitic stainless steel is used as a mount, saddle or housing for the SAW substrate.
Abstract:
An actuator and sensor system (1) for composite structures, especially carbon-fiber reinforced plastic structures (10) with piezo-ceramic actuators, particularly for active vibration dampening and/or shape control purposes, as well as fiber Bragg grating sensors (30), particularly in the form of strain measurement sensors. The piezo-ceramic actuators are designed as piezo fiber modules (20a, 20b) and the fiber Bragg grating sensors (30) are at least partially embedded in the piezo fiber modules (20a, 20b).
Abstract:
An actuator and sensor system (1) for composite structures, especially carbon-fiber reinforced plastic structures (10) with piezo-ceramic actuators, particularly for active vibration dampening and/or shape control purposes, as well as fiber Bragg grating sensors (30), particularly in the form of strain measurement sensors. The piezo-ceramic actuators are designed as piezo fiber modules (20a, 20b) and the fiber Bragg grating sensors (30) are at least partially embedded in the piezo fiber modules (20a, 20b).
Abstract:
A method of, and apparatus for, measuring dynamic torque transmitted by a shaft having an axis of rotation is characterised by the steps of:1 locating on the shaft (S) a pair of transducers (T, T1, T2), each comprising an SAW resonator, as a complementary pair so that for a first direction of rotation (K) of the shaft (S) about the axis (A) one transducer (T1) is under compression and the other (T2) in tension and for a reverse direction of rotation of the shaft the one transducer (T1) is in tension and the other (T2) in compression, a signal input (C1) and a signal output (C2, C3) for either each transducer or a single signal output for a signal derived from both transducers, the signal input and signal output or outputs being located at discrete locations on or near the outside of the shaft (S) for rotation therewith,2 causing a driving signal to be applied to the signal input (C1);3 detecting at each or the signal outlet (C2, C3) at least an output resonant frequency of the transducer (T, T1, T2) when driven by the driving signal; and4 processing the output resonant frequency signal of each or both transducers to derive information as to the strain generated in the transducer (T1, T2) induced by stress in the shaft (S) due to dynamic torque transmitted by the shaft (S).The invention further provides for various output signals to be provided relating to dynamic torque with or without temperature compensation and/or representation.
Abstract:
The invention is directed to a counting scale which implements a load cell assembly for the measurement of weight used in counting calculations. A load cell in such an assembly has a beam structure with beams positioned parallel to each other in at least one plane. Generally, these parallel beams are attached to a stationary base and have sensing means attached between the two beams and the base. These sensing means are preferably resonators which have resonant frequencies that vary in response to an applied force on the load cell. A controller is included in the assembly to drive these resonators, convert their frequency outputs to digital values, and correct for various environmental effects, to obtain an accurate weight measurement for use in the counting scale.
Abstract:
Disclosed is a surface acoustic wave interferometer, including a substrate on which are disposed a first reflector and a second reflector so as to define a multimode resonant cavity therebetween. A third reflector is positioned on the substrate so that a single mode resonant cavity is defined between the second and third reflectors. An input transducer generates surface acoustic waves in the single mode cavity, while an output transducer detects the interference between surface acoustic waves in the multimode and single mode cavities. A base is rigidly affixed to the substrate in the region of the single mode cavity so that a force applied to the substrate will alter the surface acoustic wave propagation characteristics within the multimode cavity.
Abstract:
Transducer device employing relative changes in the acoustic propagation characteristics of waves of the Rayleigh type flowing at a polished surface of a thin elastic member yield a measure of the degree of flexing of the elastic member, which latter may take the form, for instance, of a cantilever clamped at one end. Applications such as to strain or displacement gages and to accelerometers are provided.