Abstract:
A force transducer comprises a block of material which is formed with a generally U-shaped or pi-shaped throughaperture 24 and a generally T-shaped throughaperture 26 in such a way as to form two loading members 10, 12 coupled together by first flexure elements 14, 16 which constrain the loading members to move in a predetermined direction under load and a second pair of flexure elements 18, 20 united by a connecting portion 22. In use, one loading member is connected to a fixture and the other is connected to a force receiver so that when one loading member is displaced relative to the other in said predetermined direction, the second flexure strips 18, 20 undergo a lateral deflection which is a measure of the applied force. This arrangement is particularly suitable for use with strain gauges as the flexures 18, 20 are subjected to a substantially uniform stress along their lengths when loaded.
Abstract:
Precision strain-gage transducers of low-cost construction, which lend themselves well to expression in the form of protectively-enclosed miniature load beams, are developed from sensing elements fine-blanked from wholly flat thin metallic sheet stock, the shaping and dimensioning of critical strain-responsive portions being controlled by the fine-blanking of both inner and outer edges of the element. Versatile mounting and loading provisions are conveniently associated with the element by way of simple openings formed laterally of the strain-responsive portions, and protective enclosure of sensitive strain gages and the strain-responsive portions is achieved by the transverse build-up of the element with stamped sheet-stock flanges affixed and sealed to it at spaced positions and to ends of a surrounding tubular bellows.
Abstract:
A parallel beam load cell wherein sensitivity to transverse load position changes is reduced by changing the shape of one of the beams in the vicinity of one strain gage element whereby the neutral axis of said beam is changed with respect to said strain gage element. Longitudinal load position sensitivity is reduced by changing the cross sectional area of one of the beams adjacent one strain gage element.
Abstract:
A load pin configured for measuring a force, the load pin including two sensors spaced apart from each other for measuring stress or tension. An axis includes a lateral surface configured to be subjected to a load from an upside in an area of the axis between the two sensors. A slot divides the axis into a lower portion and an upper portion, the slot extending essentially in an axial direction of the axis.
Abstract:
A valve stem connector comprises a first half and a second half, each of which includes a top section adapted to receive a portion of an actuator and a bottom section adapted to receive a portion of a valve stem. A plurality of cut-away sections is disposed in each of the first and second halves, and a pair of shear web installation sites is disposed between the plurality of cut-away sections on each of the first and second halves. A force measurement device is disposed in each shear web installation site of the pair of shear web installation sites, the force measurement device for measuring the strain on the valve stem. Each shear web installation site has a shear strain measurable by the force measurement device, and the plurality of cut-away sections allows for a bending beam near each pocket to minimize deflection.
Abstract:
A wheel support having a transducer body includes a first support member having a spindle configured to support a wheel assembly for rotation about an axis of the spindle and a second support member. A plurality of transducer elements connects the first support member and the second support member. One of the first support member and the second support member are configured to be mounted to a vehicle and support the vehicle in part on the spindle.
Abstract:
A system includes a span block configured to couple with an extension from a top drive at a first end of the span block and configured to couple to a tubular at a second end of the span block. The system also includes a sensor block of the span block. The sensor block extends between the first end and the second end of the span block. Moreover, the sensor block is configured to provide an electronic indication of deformation of a portion of the sensor block in response to forces placed on the span block.