Abstract:
An undersea probe which can be attached to marine animals for collecting data as to light intensity and temperature in regions where the marine animals travel. The probe is essentially omnidirectional in its light acceptance capability so that light intensity measurements will not be dependent upon any particular orientation of the probe. The probe includes a central optical fiber containing a fluorescent dye enclosed in a transparent or translucent, protective and fouling-resistant sheath. The optical fiber is provided at its outer end with a fiber terminator which blocks entry of light into the end of the fiber. At its opposite inner end, the fiber is coupled to a light detector in a housing which may be implanted in the marine animal. The optical fiber exhibits radial changes in its refractive index to trap light which approaches the surface of the fiber from inside and which makes a small enough angle with that surface. Such light is propagated along the fiber to the light detector.
Abstract:
An apparatus that conducts in situ analyses of fluids in real time is disclosed. The apparatus comprises bifurcated optic fibers, a pulsed light source, a light detector, a water-tight pressure case that houses the pulsed light source and the light detector, and a flow-through cell that receives one end of each bifurcated optic fiber. The flow-through cell may comprise a plurality of attached tube sections that define a volume which acts as a passageway for conducting fluids. One or more sections of the flow-through cell may be adapted to introduce a reagent into fluid flowing through the cell. Sections of the cell may contain potassium periodate and N,N-diethylaniline that are released into a fluid flowing through the passageway, enabling the spectrophotometer to analyze manganese (II) concentrations by monitoring the decrease in fluorescence accompanying the oxidation of DEA to 2 DEA'. The fluid may also be analyzed by measuring reflectance, absorption, turbidity, and fluorescence.
Abstract:
An arrangement through which the concentration of fluorescent materials, when present in low quantities, may be measured within a fluid. A transmitter is flashed periodically at a rate corresponding to the rate that measurements are taken, for the purpose of exciting the fluorescent materials. Filters and optical systems are provided at the transmitter for transmitting the appropriate light. A receiver spaced from the transmitter or light source is also equipped with appropriate filters and optical systems, and receives on a photosensor, the radiation from the fluorescent materials. The resultant electrical signals from the photosensors are amplified and compensated against daylight and cloudy effects of the medium, through an auxiliary amplifier.
Abstract:
Methods and apparatus for launch and recovery of a remote inspection device within a fluid storage tank. In one embodiment, the tank is accessed by opening an entrance hatch and then injecting a vapor suppression foam across a surface of a stored liquid mass to form a foam layer. A launching system having a remote inspection device is attached to the entrance hatch to define a launch and recovery space sealed from an external environment and isolated from the stored liquid mass in the tank via a valve and the foam layer. The launch and recovery space is purged of hazardous vapors by injection of an inert gas prior to launch and recovery of the remote inspection device. Prior to removal of the launching system, the surface of the stored liquid mass is re-coated with vapor suppression foam.
Abstract:
A high-resolution in situ sensing system and method for providing continuous measurements of at least one dissolved analyte including a sample processing cell having at least a first conduit defining a first passage with at least one selectively-permeable wall capable of passing a portion of the sample liquid into a processing, fluid. The at least one selectively-permeable wall substantially resists flow of another portion of the sample liquid therethrough. Processing fluid is directed through the first conduit while moving the sample liquid and the reagent fluid relative to each other in one of a stationary, concurrent or a countercurrent flow relationship to achieve either partial or full equilibration between the sample liquid and processing fluid to generate at least partially equilibrated reagent fluid and a processed sample in a substantially continuous manner.
Abstract:
An apparatus for placement on or in a body of water for hyperspectral imaging of material in the water comprises an artificial light source and a hyperspectral imager. These are arranged so that in use light exits the apparatus beneath the surface of the water and is reflected by said material before re-entering the apparatus beneath the surface of the water and entering the hyperspectral imager. The hyperspectral imager is adapted to produce hyperspectral image data having at least two spatial dimensions.
Abstract:
A submersible fluorometer (10), includes: an excitation module (40) for exciting the fluorophore; and a detection module (42) for detecting the light emitted by the excited fluorophore, wherein the excitation module (40) includes a first light source (44) including a first UV LED and having a first wavelength lower than 300 nm,the excitation module (40) includes a second light source (46) including a second UV LED and having a second wavelength lower than 300 nm, the first and second wavelengths being different from each other,and the fluorometer includes an electronic circuit having a plurality of printed circuits positioned one below the other.
Abstract:
The invention relates to recording of position-specific optical measurements of substances such as foodstuff, building materials, combustion products etc. The invention provides online, in-situ recording of wavelength absorption spectra in substances, performed without removing a sample from the substance. In inhomogeneous products, the position correlated to each spectrum allows for extraction of both average values for larger regions as well as specific values characteristic for smaller individual portions. In a preferred embodiment, a probe with two elongate arms has light guiding and light collecting means for recording infrared absorption spectra of portions between them, as well as means for determining an insertion distance into the product. The invention may be applied to as different substances as diary products (cheese, cream, milk), fruit, berries, seeds, meat, vegetable and animal fat, animal feed, water, wine, beer, lemonades, oils, rubber and plastic materials, gypsum and plaster, cement and concrete mixes, paints, glues etc.
Abstract:
An optical sensor to measure the turbidity of wash water in a household washing machine or dishwasher, includes a housing having a housing interior containing a measurement module having a light-emitting element and a light-receiving element, the measurement module defining a measurement light path which extends from the light-emitting element to the light-receiving element and passes outside the housing over a part of its path length. The light-emitting element and the light-receiving element are arranged together in a first subspace of the housing interior, and the measurement light path extends over a part of its path length through at least one second subspace of the housing interior, which is sealed from the first subspace. All the electrical/electronic components of the measurement module are fitted in the first subspace, so that any ingress of wash water into the second subspace does not compromise the electrical functionality of the sensor.