Abstract:
A plasma display device is provided. The plasma display device includes a plasma display panel (PDP); an upper substrate and a lower substrate which face each other; a plurality of scan electrodes and a plurality of sustain electrodes which are disposed on the upper substrate; a plurality of first barrier ribs which are disposed on the lower substrate in parallel with the scan electrodes and the sustain electrodes; a plurality of second barrier ribs which are disposed on the lower substrate, intersect the first barrier ribs, and are higher than the first barrier ribs; and a plurality of auxiliary electrodes which are disposed on the upper substrate and overlap the first barrier ribs. Accordingly, it is possible to improve the luminance and brightness of a PDP by forming horizontal barrier ribs to be lower than vertical barrier ribs. In addition, it is possible to reduce the amount of invalid power of a PDP by preventing crosstalk from occurring between a pair of sustain electrodes with a barrier rib interposed therebetween.
Abstract:
A plasma display apparatus is provided. The plasma display apparatus including an upper substrate; a plurality of first electrodes and second electrodes formed in the upper substrate; a lower substrate arranged to be opposite to the upper substrate; and a plurality of third electrodes and barrier ribs formed in the lower substrate includes a black matrix formed in the upper substrate to be overlapped with the barrier ribs; and a fourth electrode formed on the black matrix to intersect the third electrodes, wherein at least one of the plurality of first and second electrodes is formed in one layer.
Abstract:
A plasma display panel, which enables low voltage addressing and reduces deterioration of the fluorescent layers, thereby achieving excellent luminance, includes: a front substrate having sustaining electrodes arranged at predetermined intervals; a front dielectric layer adapted to bury the sustaining electrodes; a rear substrate facing the front substrate and including address electrodes arranged orthogonal to the sustaining electrodes; a rear dielectric layer adapted to bury the address electrodes; barrier walls adapted to define stripe-shaped discharge spaces arranged between the front substrate and rear substrate, the stripe-shaped discharge spaces being parallel to and alternating with the address electrodes; fluorescent layers arranged within the discharge spaces; and at least one floating electrode respectively arranged within the barrier walls in a longitudinal direction of the barrier walls. Alternatively, first and second barrier walls can be adapted to define discharge spaces arranged between the front substrate and rear substrate, the first barrier walls arranged parallel to and alternating with the address electrodes, and the second barrier walls arranged perpendicular to the first barrier walls and at least one floating electrode respectively arranged within the first and second barrier walls and in a longitudinal direction of the first and second barrier walls.
Abstract:
A plasma display panel includes a first substrate and a second substrate facing each other. A barrier rib together with the first substrate and the second substrate defines a plurality of discharge cells for generating a gas discharge. First discharge electrodes extend in a direction in correspondence with respective discharge cells. Third discharge electrodes are disposed in the barrier rib, extend in the direction and correspond with respective first discharge electrodes in the respective discharge cells. Fourth discharge electrodes are disposed in the barrier rib, extend in the direction, are separated from respective third discharge electrodes and face respective third discharge electrodes with respect to centers of the discharge cells. Address electrodes intersect the direction. Phosphor layers are formed in the discharge cells.
Abstract:
A plasma display panel (PDP) includes a first substrate and a second substrate arranged opposite to each other with a space therebetween being partitioned into a plurality of discharge cells, phosphor layers in the discharge cells, address electrodes extending in a first direction between the first substrate and the second substrate and corresponding to each discharge cell, first and second electrodes extending in a second direction crossing the first direction between the first substrate and the second substrate and formed opposite to each other with a discharge cell interposed therebetween, the first electrodes and the second electrodes expanding from the first substrate toward the second substrate, and third electrodes extending in the second direction between the address electrodes and the second substrate, the third electrodes being disposed between the first electrodes and the second electrodes and protruding toward the first substrate.
Abstract:
A plasma display panel has address properties stabilized. A priming discharge is performed between auxiliary electrodes (17), which are formed on a front substrate (1) and coupled with scan electrodes (6) and priming electrodes (14) formed on a back substrate (2). Furthermore, a material layer (5) containing at least one of alkali metal oxide, alkaline earth metal oxide and fluoride is provided on regions corresponding to priming discharge spaces (30) (gap parts 13) on the back substrate (2). As a result, the priming discharge has a wider margin, and a supply of priming particles to the discharge cells is stabilized, whereby a discharge delay during the addressing is reduced, and the address properties are stabilized.
Abstract:
A plasma display panel (PDP) and a flat lamp. The PDP includes an upper panel and a lower panel facing each other, a plurality of address electrodes formed in the lower panel, a plurality of sustaining electrodes formed in the upper panel, and an oxidized porous silicon layer formed in the upper panel and corresponding to a sustaining electrode.
Abstract:
A method of driving a plasma display panel to improve display brightness and luminescent efficiency. In the sustain periods, the same driving signal is sent to the sustain electrode X as well as the address electrode Ai at the same time to achieve the desired volume discharge effect. In addition, the structure of PDPs is modified to raise firing voltages between these electrodes, preventing erasure of the data written in the address periods.
Abstract:
The present invention relates to a plasma display panel, and more particularly, to an electrode structure of a plasma display panel capable of improving brightness and efficiency. According to the present invention, in the plasma display, assuming that a distance from the center of a discharge region between a pair of transparent electrodes to the center of metal electrodes is “d” and a distance between both ends of the pair of the transparent electrodes is “h”, a location on the transparent electrodes of metal electrodes satisfies d
Abstract:
The invention is a plasma display panel capable of stabilizing the addressing characteristics. A barrier rib is formed by longitudinal barrier ribs portion orthogonal to the scan electrodes and sustain electrodes on the front substrate, and side barrier rib portions crossing with these longitudinal barrier rib portions, to form cell spaces and form interstice portions between the cell spaces, and priming electrodes for producing a discharge between the front substrate and the rear substrate within the interstice portions are formed. Stable priming discharge is produced with certainty by the scan electrode and the priming electrode, hence decreasing the discharge time lag at the time of addressing and stabilizing the addressing characteristics.