Abstract:
The present invention relates to an X-ray tube with non-evaporable getters disposed therein for maintaining a degree of vacuum sufficient to operate the X-ray tube. The present invention provides a fixed-anode X-ray tube and a rotating-anode X-ray tube in which non-evaporable getters are disposed. The X-ray tubes, even when rated power is introduced without an aging process, can perform gas adsorption sufficiently and stably during operation, despite gases that can be generated by the filament and the cathode focusing cap and gases that can be generated by the target.
Abstract:
A multiradiation generation apparatus according to the present invention includes a plurality of radiation sources arranged in a row. Each of the radiation sources includes an electron source configured to emit electrons and a target unit configured to generate radiation upon receiving electrons emitted from the electron source. At least one of the radiation sources is a dual-purpose radiation source used for both tomosynthesis imaging and non-tomosynthesis imaging, and the other radiation sources are single-purpose radiation sources used only for tomosynthesis imaging.
Abstract:
A miniature X-ray source device for effecting radiation therapy at least comprising a vacuum tube containing a cathode and an anode spaced apart at some distance from each other; emitting means for emitting free electrons from the cathode; electric field generating means for applying during use a high-voltage electric field between the cathode and the anode for accelerating the emitted free electrons towards the anode, as well as an exit window for X-ray radiation being generating at the anode. The present invention provides an improved miniature X-ray source device, that can also properly be used in treating skin cancer and which is easy to handle. The anode is provided with a flat X-ray emitting surface. In particular, the cathode exhibits a concave shaped surface having a center part surrounded by an upright circumferential edge, wherein the center part of the concave shaped surface is provided with an electron emitting material.
Abstract:
An X-ray source includes an electron-beam generating unit that generates an electron beam, and a transmission type target electrode to be irradiated with the electron beam to generate X-ray radiation. A plurality of convex portions each having an inclined surface with respect to an incident direction of the electron beam is formed on a surface of the transmission type target electrode.
Abstract:
An X-ray tube (1) comprising a cathode (3), an anode (5) and a further electrode (7) is proposed. Therein, the further electrode is arranged and adapted such that, due to impact of 'free electrons (27) coming from the anode (5), the further electrode (7) negatively charges to an electrical potential lying between a cathode's potential and an anode's potential. The further electrode (7) may be passive, i.e. substantially electrically isolated and not connected to an active external voltage supply. The further electrode (7) may act as an ion pump removing ions from within a primary electron beam (21) and furthermore also removing atoms of residual gas within the housing (11) of the X-ray tube (1). In order to further increase the ion pumping capability of the further electrode (7), a magnetic field generator (61) can be arranged adjacent to the further electrode (7).
Abstract:
The invention relates to a solid state brachytherapy applicator for performing radiation therapy treatment in an animal body, said applicator at least comprising an X-ray emitting surface composed of: a vacuum cavity containing a cathode and an anode spaced apart at some distance from each other; emitting means for emitting free electrons from the cathode; electric field means for applying during use a high-voltage electric field between said cathode and said anode for accelerating said emitted free electrons towards said anode; wherein said vacuum cavity being at least partly transparent to X-ray radiation emitted by said anode.The invention furthermore relates to a radiation therapy treatment system for performing radiation therapy treatment in an animal body and to a method for performing radiation therapy treatment in an animal body using a solid state brachytherapy applicator according to the invention.According to the invention said vacuum cavity is bound by first and second plate-shaped elements spaced some distance from each other, said first plate-shaped element serving as cathode and said second plate-shaped element serving as anode.
Abstract:
The invention relates to a miniature X-ray source device connected to a distal end of a guiding wire for insertion towards a desired location within an animal body for effecting radiation therapy, said X-ray source device at least comprising a vacuum tube containing a cathode and an anode spaced apart at some distance from each other; emitting means for emitting free electrons from the cathode; electric field generating means for applying during use a high-voltage electric field between said cathode and said anode for accelerating said emitted free electrons towards said anode; a getter material located in a high-voltage electric field free region in said vacuum tube; wherein said vacuum tube being at least partly transparent to X-ray radiation emitted by said anode. It is necessary to locate the getter material inside the vacuum tube at a location, where no electric field between the anode and cathode exits. An essentially electric field free location of the getter material is required as therefore the getter would not present any internal electrical problems associated with surface arcing or breakdown. To this end, in order to benefit from the use of a getter material inside the vacuum tube for improving the vacuum level inside as well as avoiding any electrical problems as mentioned above and to obtain an improved miniature X-ray tube source device having reduced constructional dimensions according to the invention said cathode is arranged for shielding said getter material from said high-voltage electric field.
Abstract:
Generally, the present invention provides a device for insertion into a body of a subject being treated to deliver localized x-ray radiation, and a method for fabricating such a device. The device includes a cathode structure that has a thin, diamond film as a cathode. The device further comprises a vacuum housing and an anode. A method for fabricating a device for localized x-ray radiation is described which includes the formation of a thin diamond film on a getter at temperatures below an activation temperature of the getter.
Abstract:
A cathode structure comprising a getter material provided with a diamond film. The getter material may include zirconium, vanadium and iron. Cathode structures may have a substantially rounded configuration including a substantially straight portion. Other cathode structures may have a substantially flat portion, with the diamond film covering essentially the entire flat surface. Methods of manufacturing cathode structures may include conditioning the cathode structure by applying a voltage.
Abstract:
An X-ray tube having a rotary anode comprising a disc-shaped anode and a substantially cylindrical rotor, wherein the anoderotor assembly is made integrally of a single piece of graphite, whose cylindrical rotor part is provided with a ferromagnetic hollow cylinder whereupon acts the rotating electromagnetic field produced by the stator.