Abstract:
In a method of manufacturing a cathode-ray tube having an electron gun in which a voltage-dividing resistor is disposed, metal straps are disposed on the right and left of the electron gun. When metal deposited films for stabilizing a potential are formed on the inner wall of a neck portion of corresponding portions or the like by a radio-frequency heating means, metal deposited films of substantially the same thickness can be formed. In a cathode-ray tube in which a voltage-dividing resistor (9) is disposed on one glass bead (4) of a pair of glass beads (4) and (5) of an electron gun and metal straps (15) and (16) are disposed on a part of the glass beads (4) and (5) so as to include the voltage-dividing resistor (9), when metal deposited films for stabilizing a potential are formed on the inner wall of the neck portion, the surfaces of the glass beads and the surface of the voltage-dividing resistor by heating and evaporating the metal straps (15) and (16) by a radio-frequency induction heating means (26), the metal straps (15) and (16) are heated by the radio-frequency induction heating means (26) in which a metal plate (25) is disposed on the other glass bead (5) side at its portion opposing the metal strap (16).
Abstract:
A photomultiplier is constituted by a photocathode and an electron multiplier having a typical structure in which a dynode unit having a plurality of dynode plates stacked in an incident direction of photoelectrons, an anode plate, and an inverting dynode plate are sequentially stacked. Through holes for injecting a metal vapor are formed in the inverting dynode plate to form secondary electron emitting layers on the surfaces of dynodes supported by the dynode plates, and the photocathode. With this structure, the secondary electron emitting layers are uniformly formed on the surfaces of the dynodes. Therefore, variations in output signals obtained from anodes can be reduced regardless of the positions of the photocathode.
Abstract:
The present invention provides an electron gun assembly including at least one field emission type cold cathode acting as an electron beam source, a support for supporting the cold cathode thereon, a control electrode spaced away from the cold cathode, the control electrode cooperating with the support to enclose the cold cathode therein, a thermal shield member provided both around the control electrode and below the support to prevent heat conduction to the cold cathode. The thermal shield member does not allow heat conduction to the cold cathode when the electron gun assembly is to be enclosed in a glass valve by softening a neck portion of the glass valve with an oxygen burner and then attaching the softened neck portion to the electron gun assembly, resulting in that an emitter of the cold cathode is not increased in temperature and that a summit of an emitter is not oxidized. Thus, the work function of the cold cathode is not increased, and thereby there can be obtained a cathode ray tube including a field emission type cold cathode in which the emission performance is not degraded.
Abstract:
A vacuum tube includes a ceramic element and a conductive element. A conductive connection consisting of a first layer containing silver and a filler and a second layer containing silver, gold or copper is formed between the ceramic element and the conductive element. The two above-mentioned layers are bonded together by means of diffusion bonding.
Abstract:
An optical interrogation system has camera arrays useful for determining the locations of a plurality of apertures on a flat tension shadow mask and fiducial marks on a screened front panel of a CRT. The system determines the actual location of apertures or fiducial marks with respect to the cameras' field of view. By eliminating gray scaling, the processing only for light/dark transitions in single-bit binary valued pixels from each of the cameras in parallel, i.e., simultaneously, remarkable rapidity is obtained in the interrogation of widely spaced fields with minimal hardware. The system may also be used to interrogate mask support surfaces on the front panel prior to welding the mask thereto.
Abstract:
A cathode ray tube comprising an electron gun having a number of electrodes with securing members and a number of supports of electrically insulating material, said supports and electrodes being interconnected by means of serrated clamping members. By virtue of this construction, the microphonic behavior of the electron gun is improved.
Abstract:
A magnetron anode is manufactured by producing a blank in a sheet of conductive material which is then bent to form an anode vane structure. The structure is then inserted in a cylindrical block and brazed in position to form the magnetron anode. The anode vane structure may be formed from two folded blanks, which are arranged to interengage one another.
Abstract:
A method of manufacturing an electron gun component, in which the electrodes are positioned in a jig by means of positioning means which are located at the edge of the electrodes. The method does not use pins to position the electrodes. In an exemplary embodiment, the electrodes are stacked in the jig with clearance. The positioning means are located at the vertices of a polygon which comprise the apertures in the electrodes. If an electrode is tubular in shape, the positioning means and the apertures in the electrode are preferably located in one plane.
Abstract:
The present invention provides an improvement in a color picture tube having an inline electron gun with coma correction members therein. The gun includes at least two electrodes that form a main focusing lens and a shield cup interconnected to one of the main focus electrodes. The improvement comprises the coma correction members being attached to the outside surface of the shield cup facing the main focusing lens electrodes. In a method of attaching the coma correction members to the shield cup, the members are provided as one of a plurality of sets of members in a continuous strip. One set of members are placed against the outside surface of the bottom of the cup and welded thereto. Portions of the strip that are not part of the welded members are broken-away from the welded members.
Abstract:
A multibeam electron gun comprising two spaced successive electrodes individually held in position from a common support. One electrode comprises a single metal first plate having at least three electron-beam-defining first apertures therein. The other electrode is a composite structure comprising (a) a single metal second plate having a window therein opposite each of said first apertures and (b) a separate metal third plate attached to said second plate closing each of the windows. The third plate has a single electron-beam-defining second aperture therein separately aligned with one of the first apertures.