Abstract:
A connector for electrically connecting an electronic device to another device includes an outer shell with a front surface that terminates at a front side of the connector, an inner core at least partially disposed within the outer shell and including a front surface that is recessed within the outer shell, and a plurality of electrical connecting elements at least partially disposed within the inner core and extending from the front surface of the inner core. The plurality of electrical connecting elements includes a first set of electrical connecting elements and a second set of at least one electrical connecting element, and the first set of electrical connecting elements includes five connecting elements that are arranged in a pentagon pattern. The connector facilitates the transmission of audio signals between devices and also additional analog or digital signals or the transmission of a power supply between the devices.
Abstract:
A switching power supply includes a source of DC voltage and a transformer having primary and secondary windings. A switching circuit is coupled between the DC voltage and the primary winding to provide alternating current to the primary winding. A rectifier circuit is coupled to the secondary winding to provide a DC output voltage. A controller circuit controls the switching circuit to modulate the alternating current provided to the primary winding. A circuit receives a first input signal having a magnitude which is determined by the DC output voltage and a second input signal having a magnitude which is determined by a selected position of a multiposition switch. An output of the circuit generates a feedback signal which is coupled to the controller circuit.
Abstract:
A progammable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
A switching power supply includes a source of DC voltage and a transformer having primary and secondary windings. A switching circuit is coupled between the DC voltage and the primary winding to provide alternating current to the primary winding. A rectifier circuit is coupled to the secondary winding to provide a DC output voltage. A controller circuit controls the switching circuit to modulate the alternating current provided to the primary winding. A circuit receives a first input signal having a magnitude which is determined by the DC output voltage and a second input signal having a magnitude which is determined by a selected position of a multiposition switch. An output of the circuit generates a feedback signal which is coupled to the controller circuit.
Abstract:
A programmable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
A progammable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
A progammable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
A progammable power supply for providing a regulated DC output power is disclosed. The power supply provides the output power to any one of a plurality of electronic devices adapted for receiving the output power at an operational voltage or an operational current. The power supply receives a programming signal to maintain the output power at the operational voltage or operational current associated with a particular selected electronic device. Accordingly, by varying the programming signal, the power supply can be programmed to provide output power to any one of several electronic devices having differing input power requirements.
Abstract:
The present invention is directed to a downhole, high-current, low-impedance, feed-through connector for passing electrical current, preferably high frequency AC current, between a tool compartment having relatively high pressure and another tool compartment having relatively low pressure. The primary intended application of the present invention is to connect a radio frequency transmitter/receiver antenna to the antenna's tuning capacitors, but the present invention is applicable to any downhole application requiring the transmission of high electrical current across a barrier having a high pressure differential. This invention minimizes the force acting on the connector due to the high pressure differential by providing a conductor preferably having either a wave-like cross-section or a multi-finned cross-section, thereby minimizing the overall cross-sectional area of the connector yet providing sufficient cross-sectional area of the conductor to carry the necessary amount of electrical current.
Abstract:
The subject matter disclosed herein relates to mechanisms for programming power supply circuitry for providing an appropriate current or voltage to powering portable devices or recharge batteries. More particularly, a power supply is coupled to a portable device of battery through a connector which is associated with the portable device or battery. The connecter includes resistive circuitry which is detectable at the power supply for programming the power supply to provide the appropriate voltage or current associated with the portable device or battery.