Abstract:
The present invention relates to an electron tube includes, at least, a cathode electrode and a face plate having a photocathode which are arranged at one end of a body, and a stem arranged at the other end of the body for defining the position of an electron entrance surface where the electron emitted from the photocathode reaches. The object of the present invention is to provide an electron tube which can reduce its size and has a structure for improving the workability in its assembling process. In particular, the electron tube in accordance with the present invention comprises a bonding ring, provided between the face plate and the cathode electrode, for bonding the face plate and the cathode electrode together. The bonding ring is made of a metal material selected from the group consisting of In, Au, Pb, alloys containing In, and alloys containing Pb.
Abstract:
A photomultiplier tube which obtains a large decrease in manufacture time, prevents generation of gas within the envelope, prevents deterioration of electron multiplier assembly (dynodes), and greatly reduces noise. The envelope includes an all-metal cylindrical sidewall, at one end of which is an annular, flange-shaped, metal sealing area. The stem of the photomultiplier tube has another annular flange-shaped, metal sealing area. These two sealing areas are welded together. Also a metal exhaust tube is connected to the stem by resistance welding. The metal exhaust tube is severed using pinch-off seal at the final stage of the photomultiplier tube production.
Abstract:
An optical window comprises a plurality of glass members and a plurality of reflective members each being formed between the adjacent glass members. Each reflective member is made of a glass medium which is the same as the glass member and grain regions made of a material having large reflectance and interspersed in the glass medium. A radiation position-sensitive detector comprises a scintillator, the optical window of the invention, and a multi-anode type photomultiplier tube which has a plurality of photomultipliers.
Abstract:
A long photomultiplier comprises a cylindrical main body having a light receiving face which extends in the longitudinal direction of the main body, a photocathode provided inside of the main body so that the photocathode extends along the light receiving face and emanates photoelectrons when exposed to light, and dynodes provided inside of the main body for multiplying the emanated photoelectrons. A reflection plate is provided facing and extending along the light receiving face, and the photocathode is positioned between the light receiving face and the reflection plate. The reflection plate is positioned for reflecting light, which has passed through the photocathode, toward the photocathode.
Abstract:
A photomultiplier with plural photocathodes comprising a rectangular end face plate, plural photocathodes arranged on the end face plates at predetermined intervals in the longitudinal direction of the end face plate, plural focusing electrodes assigned to the photocathodes respectively, plural dynodes provided in common for all of the photocathodes, and plural anode electrodes assigned to the photocathodes respectively, each of the dynodes having plural electron emitting parts for emitting secondary electrons and insulating parts for preventing the secondary electrons emitted from any one of the electron emitting parts from straying into the other electron emitting parts.
Abstract:
A photomultiplier used in liquid scintillation counting has an envelope, a base, an anode, a curved dynode structure and a photocathode. A specimen is inserted in a measuring area of the envelope for liquid scintillation counting. The photocathode has a concave surface, so that the specimen is encircled by the photocathode as completely as possible. The photocathode is positioned at a concave window of the envelope, so that a maximum number of photons directly impinge on the photocathode.
Abstract:
A so-called "solar-blind" photomultiplier tube includes an envelope having a sidewall and an input faceplate formed from an ultraviolet transmitting filter. A photoemissive cathode is disposed within the envelope for providing photoelectrons in response to radiation incident thereon. The cathode has an intrinsic responsivity extending from the near-ultraviolet portion through the visible portion of the electromagnetic spectrum; however, the filter faceplate transmits only the ultraviolet portion of the spectrum to the photoemissive cathode. The combination of the filter faceplate and the photoemissive cathode therefore limits the tube to a responsivity within the wavelength range of about 300 to less than 400 nanometers.
Abstract:
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Abstract:
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Abstract:
A method of providing a web of packaging material with a tear strip is disclosed. The method comprises the steps of feeding such a web of packaging material along a feed path, perforating the moving web in a zone extending substantially parallel to the longitudinal edges thereof, cutting a strip from a web of tearstrip material, applying the cut strip to one surface of the web of packaging material to overlie the zone of perforation, applying suction to the respective opposite surface of the web of packaging material to retain the cut strip against said one surface, and bonding the cut strip to the web of packaging material. Advantageously, the bonding step comprises the application of heat to weld the cut strip of tear-strip material to the moving web of packaging material. Also disclosed is a device for carrying out the method. The device comprises feeder means to feed such a web of packaging material along a feed path, perforator means to perforate the moving web of packaging material in a zone substantially parallel to the longitudinal axis thereof, cutting means to cut a strip from a web of tearstrip material, applying means to apply the cut strip to one surface of the web of packaging material to overlie the zone of perforation, means for applying suction to the respective other surface of the web of packaging material to retain the cut strip against said one surface, and bonding means to bond the cut strip to the web of packaging material.