Abstract:
A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.
Abstract:
A spectrophotometer includes a wide band radiant energy source and a detector for providing an output signal proportional to the intensity of the radiant energy received thereby. A light pipe system is divided into a reference path and a sample path. Such system coacts with a rotary assembly having a variable monochromatic filter located diametrically opposite to an opening through which radiant energy can freely pass. The remaining portions of the rotary assembly are opaque so that as the assembly turns, the sample and reference paths are serially energized by monochromatic energy and then by polychromatic energy. The sample path includes a sample illumination and collection system for illuminating a test sample and collecting the light reflected therefrom. The resultant output of the detector can be analyzed to determine the amount of fluorescence.