Abstract:
A RC power semiconductor is provided which comprises a plurality of diode cells and a plurality of GCT cells. Each GCT cell comprises a first cathode layer with at least three cathode layer regions, which are separated from each other by a base layer. In orthogonal projection onto a plane parallel to the first main side each one of the cathode layer regions is strip-shaped and a width (w, w′), wherein the diode cells alternate with the GCT cells in a lateral direction in at least a mixed part, wherein in each GCT cell, the width (w′) of each one of the two outer cathode layer regions next to a diode cell neighboring to that GCT cell is less than the width (w) of any intermediate cathode layer region between the two outer cathode layer regions in that GCT cell.
Abstract:
A highly accurate fault location method for series-compensated double-circuit transmission lines having series compensation devices and metal oxide varistors (SC&MOV) at first and second terminal ends is provided. Synchronized or unsynchronized current phasors and local voltage phasors are used as input to the fault location method. The voltages and currents at the fault point are formulated as a function of the unknown fault location. Boundary conditions for the particular IED-determined fault type are used to derive the fault location formulas.
Abstract:
A method for transmitting measurement data includes receiving measurement data in a first communication module, time stamping the measurement data in the first module with a time tag, transmitting the measurement data to a second communication module via a packet switched data network, and outputting the transmitted measurement data after a predefined delay time ΔtD after the time stamping of the measurement data.
Abstract:
An exemplary power-electronic switching system has a plurality of switching units, wherein each switching unit includes a housing and at least one switching module which is arranged within the housing. A mounting unit has a holding apparatus, on which the housings of the switching units are arranged. The holding apparatus includes an insulation material for electrically insulating the holding apparatus from the housings of the switching units and the housings of the switching units from one another. The insulation material allows the housings of the switching units of the switching system to have different voltage potentials from one another and additionally can be realized in a simple and space-saving manner and easily be assembled. In addition, the housing of each switching unit includes a material for at least partially shielding an electric and magnetic field.
Abstract:
A cable comprising that includes an elongated conductor operable to transmit electrical energy at medium or high AC voltages. The conductor has a core including a first plurality of wires of a first conductive material, and an outer layer surrounding the core including a second plurality of wires of a second conductive material. The first conductive material has a deeper characteristic skin depth than the second conductive material. The total cross sectional area of the first and second plurality of wires is at least about 2500 kcmil.
Abstract:
A computer-implemented system and method of determining the vulnerability of an asset includes determining an elevation surface surrounding an asset. A target point and aim point are selected on the asset and ballistic trajectories are determined for a particular projectile. A plurality of trajectory height surfaces that are rotationally symmetric about the asset and having a cross-section corresponding to the projectile trajectory for the selected range. A corrected elevation surface is generated for each range based on the trajectory height surface for the particular range. An observer view surface is generated from the plurality of corrected elevation surfaces, and is combined with the target visibility surface to generate the target vulnerability surface.