Abstract:
Techniques are described for wireless communication. One method for wireless communication at a base station includes contending for access to a shared channel of a shared radio frequency spectrum band, and multiplexing first component carrier (CC) communication windows and second CC communication windows in the shared channel. A duration of orthogonal frequency domain multiplexed (OFDM) symbols of the first CC communication windows may be different from a duration of OFDM symbols of the second CC communication windows, and the multiplexing may occur on the shared channel upon winning contention for access to the shared channel. One method for wireless communication at a user equipment (UE) includes monitoring a shared channel of a shared radio frequency spectrum band for a first CC Listen Before Talk (LBT) frame, and receiving, in a second CC preamble, an indication of the first CC LBT frame.
Abstract translation:技术描述为无线通信。 一种用于在基站进行无线通信的方法包括竞争对共享射频频带的共享信道的访问,以及在共享信道中复用第一分量载波(CC)通信窗口和第二CC通信窗口。 第一CC通信窗口的正交频域多路复用(OFDM)符号的持续时间可以不同于第二CC通信窗口的OFDM符号的持续时间,并且在获得争用访问共享信道时在共享信道上可能发生复用 渠道。 在用户设备(UE)的无线通信的一种方法包括:监视用于第一CC在线聆听(LBT)帧的共享射频频带的共享信道,并且在第二CC前导码中接收第一CC CC LBT框架。
Abstract:
Methods, systems, and devices are described for wireless communication. A device may use enhanced reporting mechanisms to support control information reporting on shared spectrum. In some cases, a device may utilize enhanced component carriers (eCCs) for data transmissions. In one example, the device may transmit control information (e.g., ACK/NACK, CSI, etc.) to a corresponding device using a CCA exempt transmission (CET). In another example, a device may report control information quasi-periodically. For instance, a device may be assigned a specified interval and a control feedback window for reporting control information (e.g., CSI). The window may provide a duration prior and subsequent to the specified interval during which a UE may transmit control information. For example, the device may perform a CCA reserving the channel for a duration that does not include the specified interval but may transmit feedback information based on determining the specified interval falls within the assigned window.
Abstract:
In some aspects, a method for performing wireless communication includes configuring a set of virtual cells for user equipments (UEs). One or more virtual cells of the set is associated with at least one set of parameters. The method also includes transmitting information, to the UEs, regarding the set of the virtual cells, and operating, for a same virtual cell, according to a same set of parameters for some or all of the UEs. In other aspects, a method for performing wireless communications includes receiving, from a node, information regarding, for a UE, a set of virtual cells associated with a set of parameters. The method also includes communicating with the node. The communication is based on a virtual cell and its associated set of parameters.
Abstract:
A method to enhance coverage and/or throughput in a heterogeneous wireless network includes detecting interference between a neighboring cell and a serving cell. The method also includes cancelling the interference using an adaptive technique based on whether the interference has colliding Common Reference Signal (CRS) tones or whether the interference has colliding Dedicated Reference Signal (DRS) tones.
Abstract:
Methods, systems, and devices for wireless communication are described. Wireless devices may use enhanced carrier aggregation (eCA) to increase the throughput of a communications link, and control schemes for reducing signaling overhead may be employed to support eCA operation. For instance, downlink control information (DCI) supporting resource grants on a plurality of component carriers (CC) may be provided. These joint grants of resources may be used in addition to individual resource grants. A resource allocation granularity associated with the joint grant of resources may be based on the number of CCs scheduled by a resource grant message. The resource allocation granularity may be a function of whether uplink or downlink CCs are scheduled, and it may be determined based on a location of or channel associated with the resource grant message. A receiving device may identify allocated resources based on the scheduled CCs and resource allocation granularity.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may employ a multiplexing configuration based on latency and efficiency considerations. The base station may transmit a resource grant, a signal indicating the length of a downlink (DL) transmission time interval (TTI), and a signal indicating the length of a subsequent uplink (UL) TTI to one or more user equipment (UEs). The base station may dynamically select a new multiplexing configuration by, for example, setting the length of an UL TTI to zero or assigning multiple UEs resources in the same DL TTI. Latency may also be reduced by employing block feedback, such as block hybrid automatic repeat request (HARQ) feedback. A UE may determine and transmit HARQ feedback for each transport block (TB) of a set of TBs, which may be based on a time duration of a downlink TTI.
Abstract:
Various aspects described herein relate to communicating using dynamic uplink and downlink transmission time interval (TTI) switching in a wireless network. A notification can be received from a network entity of switching a configurable TTI from downlink communications to uplink communications. The configurable TTI can be one of a plurality of TTIs in a frame structure that allows dynamic switching of configurable TTIs between downlink and uplink communications within a frame. Additionally, uplink communications can be transmitted to the network entity during the configurable TTI based at least in part on the notification.
Abstract:
The various embodiments include methods and apparatuses for cancelling nonlinear interference during concurrent communication of multi-technology wireless communication devices. Nonlinear interference may be estimated using a minimum mean squares interference filter by generating aggressor kernels from the aggressor signals, augmenting the aggressor kernels by weight factors and executing a linear combination of the augmented output, at an intermediate layer to produce intermediate layer outputs. At an output layer, a linear filter function may be executed on the intermediate layer outputs to produce an estimated nonlinear interference used to cancel the nonlinear interference of a victim signal.
Abstract:
Certain aspects of the present disclosure relate to a hybrid approach for Physical Downlink Shared Channel (PDSCH) Interference Cancellation (IC). In certain aspects, if the PDSCH information is known for a serving cell but not be known for interfering cell(s), a hybrid approach that involves using Codeword-level IC (CWIC) for the serving cell and using Symbol-level IC (SLIC) for the interfering cells may be used for better IC performance. The hybrid IC approach may start with a UE attempting to decode the serving cell PDSCH. If the decode is unsuccessful, the UE may perform CWIC for the serving cell followed by SLIC using the results of the CWIC stage. After the SLIC stage, the UE may attempt to decode the serving cell PDSCH again. The UE may perform multiple operations of this method until the serving cell PDSCH is successfully decoded or a maximum number of iterations is reached.
Abstract:
Obtaining a timing reference in wireless communication is facilitated when desiring to communicate with a weak serving base station (such as an evolved NodeB) in the presence of a stronger interfering base station. The user equipment (UE) may track a stronger interfering base station's timing, or the UE may track a timing that is derived by a composite power delay profile (PDP) from multiple base stations. The composite PDP may be constructed by adjusting individual base station PDPs according to a weighting scheme. The timing obtained in such a manner may be used for estimation of the channel of the interfering base station and cancelling interfering signals from the base station. It may also be used to estimate the channel of the serving base station after adding a backoff. The UE may track a stronger interfering base station's frequency, or the UE may track a composite frequency.