Abstract:
A method and system is disclosed for including an IMSI in an EVDO access request. When an access terminal determines that any access request it makes will be sent to a micro-type base station, the access terminal will include its IMSI in any EVDO access request. When a micro-type base station receives an EVDO access request containing an IMSI of the requesting access terminal, the micro-type base station will use the included IMSI to establish and identify a data connection to a PDSN.
Abstract:
Exemplary methods and systems for providing access to IMS services are disclosed herein. An exemplary method involves a first radio access network (RAN) component: (a) sending a registration message to an IMS network in order to register the first RAN component with the IMS network, wherein the IMS registration message provides an IP address at which to register the first RAN component, (b) receiving a service request from a first access terminal, wherein the first RAN component is a serving RAN component for the first access terminal, and (c) in response to receiving the service request, the first RAN component engaging in an IMS service on behalf of the first access terminal, wherein engaging in the IMS service on behalf of the first access terminal comprises sending the IMS network a first initiation message for a session event, wherein the first initiation message comprises: (i) a field that identifies the first access terminal and (ii) a field that includes an IP address of a second RAN component that serves a target access terminal.
Abstract:
An originating mobile station seeks to establish a push-to-talk (PTT) communication session with a destination mobile station. To do this, the originating mobile station transmits a first request message that requests the PTT session. Before receiving a predefined indication that the requested PTT session has been accepted, the originating mobile station transmits a first continuation message that includes first session description information to facilitate establishment of the PTT session. A PTT server receives the first request message and, before receiving the first continuation message, transmits to the destination mobile station a second request message that requests the PTT session. The PTT server then transmits a second continuation message that includes second session description information. The destination mobile station receives the second request message and, before receiving the second continuation message, transmits an acceptance message indicating acceptance of the requested PTT session.
Abstract:
Disclosed herein is a method that enables a radio access network (RAN) to page more mobile stations concurrently. By reducing the size of the individual page record, more page records can fit within a general page message (GPM), and thus more mobile stations can receive page messages. One method of reducing the size of an individual page record is to reduce the size of the terminal IDs that page records carry. Currently, terminal IDs are globally unique, but they can be shortened if replaced with locally unique IDs. These locally unique IDs are unique for only mobile stations in a given paging area, unique for only mobile stations assigned to a given paging channel time slot, and/or unique for only mobile stations in a subgroup of mobile stations assigned to a given paging channel time slot. The number of mobile stations in any of these groups is smaller than the number of mobile stations in the global network. Therefore, the length of a terminal ID that is unique for only mobile stations in one of these groups can be shorter than a globally unique identifier.
Abstract:
Disclosed herein is a method and system for extending MIMO service in a wireless communications system. The system comprises a base station, a remote system, and a host system communicatively coupled to the base station and the remote system. The base station is configured to generate, from a baseband signal, a downlink signal comprising a plurality of downlink signal streams, including at least a first downlink signal stream and a second downlink signal stream. Accordingly, the base station may include a first and a second antenna that are configured to transmit the first and second downlink signal streams, respectively. The remote system provides wireless service in a remote coverage area. Further, the remote system is configured to transmit a downlink signal as a plurality of downlink signal streams. The host system is communicatively coupled to the base station and to the remote system and configured to relay the downlink signal streams from the base station to the remote system.
Abstract:
A method and apparatus for handing off packet-transmission between sectors of a wireless communication system is disclosed herein. During transmission of a packet from an access network to an access terminal, the access terminal determines that the packet should theoretically be transmitted to the access terminal in fewer timeslots in another sector than the number of allowed timeslots remaining for the packet transmission in a current sector. In response, the access terminal abandons packet transmission in the current sector and hands off to the other sector, in an effort to increase throughput and save air interface resources.
Abstract:
A method and system is disclosed for reactively managing dropped calls in a wireless communication system. A mobile station determines that it has experienced a dropped call. In response, the mobile station allows a user to continue communicating, such as by recording the user's speech, for instance. The mobile station may then play out the recorded speech to the user or to another call participant, such as upon reestablishment of the call.
Abstract:
In a system where a first node provides a first area of TDD coverage on a first TDD carrier using a first TDD configuration and an adjacent second node provides a second area of TDD coverage on a second TDD carrier using a different second TDD configuration, the first node could additionally provide an area of FDD coverage on a first FDD carrier, including causing the area of FDD coverage to sit at least partially between the first and second areas of TDD coverage and therefore to define a spatial buffer between the first and second areas of TDD coverage. For instance, the first access node could restrict its service on the first TDD carrier to be for user equipment devices (UEs) that are relatively close to the first access node and could restrict its service on the first FDD carrier to be for UEs that are relatively far away from the first access node.
Abstract:
A method and system for controlling application of TTI bundling on a carrier on which an access node provides service, the carrier defining air-interface resources. An example method includes detecting that at least a predefined threshold number of devices of a predefined class (e.g., IoT devices) are connected with the access node on the carrier. Further, the example method includes, responsive to the detecting that at least the predefined threshold number of devices of the predefined class are connected with the access node on the carrier, proactively reserving a portion of the air-interface resources for use to serve communications between the access node and the devices of the predefined class and, in view of the proactive reserving of the portion of the air-interface resources, imposing a reduction in the application of the TTI bundling by the access node on the carrier.
Abstract:
A mechanism for controlling service of a user equipment device (UE), including (i) predicting that the UE will move sequentially through multiple zones of coverage of an access node that operates on a different respective set of one or more frequency bands in each zone of coverage and that has a respective radio-frequency (RF) circuitry quality as to each frequency band, (ii) based on the predicting, determining an RF-circuitry-quality score of the access node as an aggregate of the RF-circuitry-qualities of the access node as to the frequency bands on which the access node operates in the multiple zones of coverage through which the UE is predicted to move, and (iii) before the predicted movement of the UE through the multiple zones of coverage occurs, proactively using the determined RF-circuitry-quality score of the access node as a basis to control whether the UE is served by the access node.