Abstract:
A rotating pumping apparatus is provided which may be employed in an automotive brake system. The rotating pumping apparatus includes a sealing member and a pressure member. The sealing member is disposed around a pump drive shaft. The pressure member includes a plate spring, a first rotation stopper, and a second rotation stopper. The first rotation stopper serves to stop the pressure member from rotating following rotation of the pump drive shaft. The second rotation stopper engages the seal ring to stop the sealing member from rotating following the rotation of the pump drive shaft. The plate spring works to elastically press the sealing member against a stopper wall of a pump casing to stop the sealing member from moving in an axial direction of the pump drive shaft.
Abstract:
A vehicle brake device includes a pressure adjusting device wherein as the volume of a pilot chamber is changed by the movement of a piston and the flow rate of liquid flowing in and out of the pilot chamber increases, the amount of movement of the piston increases with reference to the piston position in an equilibrium state where the force corresponding to the pilot pressure and the force corresponding to the output pressure are balanced, whereby the flow rate of the liquid flowing in and out of an output chamber increases. A control device, when judged by a limitation necessity judging portion that the gradient of output pressure should be limited, implements at least one of pressure increasing gradient limit control for opening a pressure decreasing electromagnetic valve under pressure increasing control, or pressure decreasing gradient limit control for opening a pressure increasing electromagnetic valve under pressure decreasing control.
Abstract:
A hydraulic braking system includes: a master cylinder including: a pressurizing piston fluid-tightly and slidably fitted in a housing; a front pressure chamber located in front of the pressurizing piston and connected to a brake cylinder; and a rear chamber located behind the pressurizing piston; a rear-hydraulic-pressure control device connected to the rear chamber of the master cylinder and configured to supply control hydraulic pressure to the rear chamber; and an air bleeding device configured to perform air bleeding for an air bleeding target portion as at least a portion of the rear-hydraulic-pressure control device, in a state in which working fluid is prevented from being supplied to the rear chamber.
Abstract:
When driving of a motor is on and W/C pressure of a low-pressure-side wheel is increased, the driving of the motor is continued until the actual W/C pressure of a high-pressure-side wheel in the same system reaches a predetermined range relative to a target pressure. Specifically, if the target pressure of the low-pressure-side wheel is greater than a predetermined value, the braking hydraulic pressure of the low-pressure-side wheel is increased, the motor is driven, and to account for a resulting decrease in the W/C pressure of the high-pressure-side wheel, the driving of the motor is continued until the W/C pressure of the high-pressure-side wheel is restored. Temperature increases in the motor can thereby be prevented and durability can be improved by shortening the drive time of the motor as much as possible.
Abstract:
A braking apparatus for a vehicle is provided which includes a hydraulic booster to make wheels of the vehicle produce frictional braking force, a solenoid valve, and a collision avoidance controller. The solenoid valve selectively exerts the hydraulic pressure of brake fluid stored in an accumulator on a spool valve in the booster. When determining that there is a risk of a collision with an obstacle, the collision avoidance controller opens the solenoid valve to achieve emergency braking to minimize the risk of the collision. Basically, emergency braking is achieved by installing the solenoid valve to selectively exert the hydraulic pressure on the spool valve, thus allowing an emergency avoidance braking system to be constructed with a minimum of equipment and facilitating the mountability of the braking apparatus in the vehicles.
Abstract:
A gear pump apparatus is equipped with a pump and a sealing mechanism which is made up of an outer member, an inner member, and a rubber member fit between the outer and inner members. The inner member has a pressure-exerted surface to which pressure, as produced by contact of the rubber member with the inner member arising from application of discharge pressure of the pump, is applied. The pressure-exerted surface has a flange which creates thrust to move the inner member away from the gear pump, thereby bringing the inner member against an inner wall of a pump casing to develop a hermetical seal between a high-pressure region and a low-pressure region within the pump casing. This eliminates the leakage of pressure and ensures torque required for a pumping operation of the pump.
Abstract:
A hydraulic unit for a vehicle brake apparatus having a master cylinder and a wheel cylinder includes a housing formed with a pipe line connecting between the master cylinder and the wheel cylinder, a pump disposed in the housing for sucking and discharging a brake fluid to boost pressure of the brake fluid, and a reservoir piston disposed in a hole formed in the housing so as to be movable slidably back and forth, the reservoir piston partitioning a reservoir chamber within the hole for temporarily storing the brake fluid discharged from the wheel cylinder. The hydraulic unit further includes a cover disposed in the hole to close one end on an atmospheric side of the hole, the cover being formed with a fluid reservoir chamber for storing the brake fluid leaking from the pump.
Abstract:
A vehicle control device which is applicable to a vehicle brake device, controls the pressure increasing control valve and the pressure-decreasing control valve so that an actual servo pressure detected by the servo pressure sensor becomes a target servo pressure; and controls so as to increase the target servo pressure by a predetermined amount, while the brake actuator is executing the braking control which accompanies a brake fluid pumping back control wherein the brake fluid supplied to the wheel cylinder is pumped back to the master cylinder by the built-in pump.
Abstract:
Vibrations of a hydraulic pressure in an upstream portion due to operations of a slip control device during anti-lock control are transmitted to a control pressure chamber via a pressurizing piston of a master cylinder and a control piston of a regulator. During anti-lock control, in contrast, a pressure-increase linear valve and a pressure-reduction linear valve are opened, allowing change in volume of the control pressure chamber, resulting in reduction in stiffness. This reduction suppresses vibrations of a hydraulic pressure in the control pressure chamber, resulting in suppression of vibrations of a hydraulic pressure in a front pressure chamber. As a result, it is possible to reduce the lowering in control accuracy for a hydraulic pressure in a brake cylinder in anti-lock control using the hydraulic pressure in the front pressure chamber, which can well avoid a long braking distance.
Abstract:
A vehicle control device corrects the amount of brake control according to the degree of stall prevention requests such that the brake control amount is matched to a travel state. For example, when the vehicle body speed is low, the vehicle body is often traveling a road surface that is difficult to travel, and the degree of stall prevention requests is small. In such cases, the vehicle control device exhibits LSD effects and increases ground-covering properties by executing vehicle wheel slip control based on stronger brake control, while increasing safety properties by better enabling generation of deceleration. Then, as the vehicle body speed increases, because it is conceivable that the vehicle body is leaving a place that is difficult to travel and the degree of stall prevention requests is high, the vehicle control device executes switching such that brake control is lowered.