Abstract:
This invention describes a heat sensitive composition comprising: (A-I) a compound which is represented by the following general formula (I) and generates a radical when heated, and (B-I) a compound having physical and chemical properties that are changed irreversibly by a radical, R—SO2−M+ General formula (I) wherein R represents an alkyl group or aryl group, and M+ represents a counter cation selected from sulfonium, iodonium, diazonium, ammonium and azinium; and a negative planographic printing plate precursor which can be recorded by heat mode using this composition. This invention also describes a planographic printing plate precursor comprising a substrate having disposed thereon a photosensitive layer containing (C-II) a light-heat converting agent, (B-II) a compound having a polymerizable unsaturated group, and (A-II) an onium salt having at least two cation parts in one molecule.
Abstract:
Multi-layer, negative working imageable elements useful as lithographic printing plate precursors are disclosed. The elements contain, in order, a support; an underlayer; and an imageable layer. The imageable layer comprises a negative working imageable composition; and the underlayer is soluble or dispersible in a developer. Elements that can be imaged with ultraviolet or visible radiation and elements that can be imaged with infrared radiation or with heat are disclosed.
Abstract:
Disclosed is a support for a lithographic printing plate, wherein an adhering amount of a rare-earth element atom to a surface thereof is 0.1 to 20 mg/mg2, and a presensitized plate provided with an image recording layer on the support for a lithographic printing plate. The presensitized plate achieving both high scum resistance and long press life can be realized, which is the same in the case the image recording layer containing an infrared absorbent, where scum would easily occur, is provided onto the support.
Abstract:
A lithographic printing plate precursor comprising: a support; an image recording layer comprising (A) an actinic ray absorber, (B) a polymerization initiator, and (C) a polymerizable compound, wherein the image recording layer is capable of being removed with at least one of a printing ink and a fountain solution; and an overcoat layer comprising an inorganic laminar compound. And a lithographic printing method comprising: mounting a lithographic printing plate precursor on a printing press; imagewise exposing the lithographic printing plate precursor with laser beams; and feeding at least one of a printing ink and a fountain solution to the lithographic printing plate precursor to remove a laser beams non-exposed area in an image recording layer; and performing printing.
Abstract:
The present invention provides a photosensitive composition including a compound that generates a radical by application of light or heat, a polymer having a phenyl group substituted with a vinyl group on the side chain, a monomer having two or more phenyl groups substituted with a vinyl group, an infrared absorbing agent, and a compound having at least one carboxylic acid group and a weight average molecular weight of 3,000 or less. Additionally, the invention provides a planographic printing plate precursor including a substrate and a negative recording layer provided on the substrate and containing the above photosensitive composition.
Abstract:
A lithographic printing process which comprises the steps of: imagewise exposing to infrared light a presensitized lithographic plate which comprises a hydrophilic support and a removable image-forming layer containing an infrared absorbing agent having the absorption maximum within an infrared region and a dye precursor having substantially no absorption within a visible region to change the dye precursor to a visible dye having an absorption within a visible region within the exposed area, and to make the image-forming layer irremovable within the exposed area; removing the image-forming layer within the unexposed area of the lithographic plate mounted on a cylinder of a printing press; and then printing an image with the lithographic plate mounted on the cylinder of the printing press. The other processes are also disclosed.
Abstract:
An object of the present invention is to provide a method for manufacturing such a dry lithographic printing master plate that has eliminated uneven plate performance and more specifically that provides a stable adhesiveness between a heat-sensitive layer and a silicone rubber layer as well as a high aging stability of a coating solution. Provided is a method for preparing a master plate useful for making a dry lithographic printing plate comprising at least a heat-sensitive layer and a silicone rubber layer which are stacked in this order on a substrate, said method comprising the steps of: (1) dissolving a diorgano-polysiloxane and a curing catalyst in a solvent; (2) dissolving a cross-linking agent in a solvent; (3) mixing the solution obtained in the step (1) with the solution obtained in the step (2); and (4) applying the mixture obtained in the step (3) over the heat-sensitive layer to thereby form the silicone rubber layer.
Abstract:
Disclosed is planographic printing plate precursor comprising a support having disposed thereon an image forming layer containing a fluorine macromolecular compound having a structural unit derived from a monomer represented by the following general formula (I). In the general formula (I), R0 represents a hydrogen atom, a methyl group, a cyano group or a halogen atom. X represents a single bond or a divalent connecting group. R1 to R6 each independently represent a hydrogen atom, an alkyl group, a fluorine atom or an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom. Further, at least one of R1 to R6 represents a fluorine atom or an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom.
Abstract:
The present invention relates to a presensitized plate useful for making a lithographic printing plate comprising an intermediate layer and a photopolymerizable photosensitive layer on an aluminum substrate in this order, wherein the roughness of a surface of said aluminum substrate (Ra) is in the range of 0.2 to 0.55 &mgr;m and the intermediate layer comprises a polymer compound comprising at least one monomer unit having a sulfonic acid group and a method for making a lithographic printing plate by imagewise exposing the presensitized plate described above and developing the imagewise exposed presensitized plate with a developer comprising an inorganic alkali salt and a nonionic surfactant comprising a polyoxyalkylene ether group. The presensitized plate or the method of the present invention provides a lithographic printing plate showing good contrast between an image area and non-image area, no background contamination during printing, good stability with time and good printing durability.
Abstract:
Disclosed is a presensitized plate composed of a support having thereon an image recording layer which includes: an infrared absorber (A) that is a cyanine dye having at least one fused ring composed of a nitrogen-containing heterocycle in combination with an aromatic ring or a second heterocycle, and having on the aromatic ring or second heterocycle an electron-withdrawing group or a heavy atom-containing group, a radical generator (B), and a radical-polymerizable compound (C), and which is removable with printing ink and/or dampening water. The presensitized of the present invention can be imaged with an infrared light-emitting laser to directly record an image from digital data on a computer or the like and is then subjected to on-machine development without carrying out a development step, which is capable of providing a large number of good impressions with a practical amount of energy.