Abstract:
A memory structure has an access transistor connected in series with a programmable resistive element, wherein the programmable resistive element comprises on a semiconductor substrate; an insulated layer with a cavity comprising: a first layer lining the lateral surfaces and the bottom of the said cavity and impermeable to the diffusion of metal; a second layer made of porous material on the said first layer; a third layer of metallic material allowing to realize a contact electrode susceptible to spread within the said formed porous material of the second layer. Diffusion of metallic ions within the said second layer is controlled by the joint action of an electric field and temperature. A manufacturing process is also described.
Abstract:
A method for monitoring the execution of a program by a processor of an electronic circuit comprises operations of collecting monitoring data within the circuit and of transmitting the monitoring data to a device for debugging the program. The monitoring data are transmitted via a connection external to the circuit, comprising at least one serial connection. The monitoring data are serialized within the circuit before being transmitted, then restored within the device for tuning the program.
Abstract:
A method for protecting an integrated circuit, including at least one non-volatile memory, including the steps of detecting a possible disturbance in the flow of a program executed by the integrated circuit, modifying the value of a digital variable in a volatile storage element in case of a disturbance detection and, in a way independent in time from the detection, intervening upon the non-volatile memory according to the value of said variable.
Abstract:
A semiconductor device includes a semiconductive channel region and a gate region. The gate region has at least one buried part extending under the channel region. The buried part of the gate region is formed by forming a cavity under the channel region. That cavity is at least partial filled with silicon and a metal. An annealing step is performed so as to form a silicide of said metal in the cavity. The result is a totally silicided buried gate for the semiconductor device.
Abstract:
A semiconductor package includes a support plate made of an electrically non-conducting material. Electrical connection vias are formed outside a chip fixing region provided on the front face of the support plate. Electrical connection wires connect pads on a front of the chip to pads on the front of the support plate associated with the electrical connection vias. The front face of the support plate is further provided with at least one intermediate front layer made of a thermally conducting material extending at least partly below the chip. The rear face of the support plate is provided with at least one rear layer made of a thermally conducting material extending at least partly opposite the front layer. The front and rear layers are connected by vias made of a thermally conducting material that fills through-holes made through the plate.
Abstract:
A non-volatile memory device includes a network of non-volatile memory cells, each comprising a floating-gate transistor, said network of cells being intended to store data in the form of a set of data words. The device includes a circuit which detects loss of charges stored in the cells and then reprograms the cells for which a loss of charges has been detected so as to restore the level of stored charges.
Abstract:
A manufacturing process for a capacitor in an interconnection layer includes the following stages: Deposit of a first metallic layer (21); Deposit of a first insulator layer (31) on the first metallic layer (21); Deposit of a second metallic layer (41) on the first insulator layer (31); Formation of an upper electrode (4) in the second layer metallic (41); Deposit of a second insulator layer (13) covering the upper electrode (4); Etching of the second insulator layer to form a spacer (14) on this first insulator layer surrounding the upper electrode (4); then Formation of a lower electrode (2) and a dielectric (3) by removal of parts from the first metallic layer and insulator not covered by the upper electrode (4) or the spacer (14); and Formation of an interconnection line (5). This process allows for manufacturing capacitors with an increased performance, in a simplified fashion at lower cost and with an auto-alignment.
Abstract:
The invention concerns a method for encrypting, with a random quantity (r), a calculation using at least a modular operation (3), the method consisting in multiplying a first modulo (n) by said random quantity, in taking as modulo of the operation, the result (m) of said multiplication and in carrying out a modular reduction of the result of the operation, on the basis of the first modulo (n).
Abstract:
A method for controlling the execution of a program including of associating with each operator an initial digital code and a final digital code which are linked to each other by a degradation function applied a number of times depending on the execution of this operator; applying, to the content of a register initialized at each instruction beginning by the initial code of the corresponding operator, said degradation function a number of times depending on the operator execution; and checking, at least at each instruction end, the coherence between the register content and the final code of the corresponding operator.
Abstract:
A circuit for converting a differential signal into a nondifferential signal comprising first and second inputs respectively receiving first and second components of a differential signal. The circuit comprises a single bipolar transistor having an emitter, a base and a collector. The transistor is biased so as to allow flowing of an emitter d.-c. bias current sufficient to allow a linear conversion of a differential RF signal, for example. Both components of the differential RF signal are respectively injected into the emitter and the base of the bipolar transistor so that a remarkably linear conversion is carried out by means of a very simple circuit. The circuit is particularly adapted to the realization of an integrated RF transmission chain.