Abstract:
A catalyst comprising a composition comprising a catalytic metal component, carbon and hydrogen deposited on a low surface area metal or metal alloy support is provided. Hydrocarbon treating and conversion processes utilizing the catalyst are also provided. The catalyst is particularly suitable for slurry processes.
Abstract:
A combination slurry hydroconversion, coking and coke gasification process is provided wherein solid fines having an average particle size of less than 10 microns in diameter or the ashes thereof recovered from a gaseous product derived from the coke gasification are used as a catalyst in the hydroconversion stage.
Abstract:
A catalytic slurry hydroconversion process for producing normally liquid hydrocarbons from a heavy hydrocarbonaceous oil and from coal is performed in at least two stages in series. The heavy oil is introduced into the first hydroconversion stage and the coal is introduced into any of the hydroconversion stages other than the first stage.
Abstract:
A process for catalytically hydroconverting coal to produce coal liquids is effected by forming a mixture of an oil soluble metal compound, a hydrogen donor solvent and coal, converting the compound to a catalyst within said mixture and reacting the mixture with hydrogen. The recovered hydrogen donor solvent may be recycled to the hydroconversion zone without intervening hydrogenation. Preferred compounds are molybdenum compounds.
Abstract:
Hydrogen sulfide and its precursors can be selectively sorbed from gas streams containing same by contacting the gas stream at elevated temperatures with a regenerable sorbent comprising a supported or unsupported lanthanum or rare earth metal component. Subsequent to sorption, the sorbent may be desorbed and regenerated by treatment with steam (desorption) and an oxidizing gas (regeneration). The sorbent capacity may be increased by the use of alkali or alkaline earth metal components as promoters.
Abstract:
A method of reducing the concentration of metal contaminants, such as vanadium and nickel, in distillates of a fossil fuel feedstock is disclosed. The method comprises producing a selected distillate fraction and demetallizing this distillate by suitable means, thereby upgrading and making it suitable for use as feed to a catalytic cracker.
Abstract:
An improved process is provided for hydroconverting of coal in which a hydrocarbon-dispersible chromium compound is mixed with a hydrocarbonaceous material, in the absence of coal, to form a high metals-containing catalyst precursor concentrate which is heated in the presence of a hydrogen sulfide-containing gas to form a solid chromium-containing catalyst. A portion of the concentrate containing the catalyst is introduced into a diluent to which coal is added or in which coal is present. The resulting mixture is subjected to hydroconversion conditions to convert the coal to a hydrocarbonaceous oil product.
Abstract:
A slurry catalytic hydroconversion process comprising at least two hydroconversion zones is provided in which the heavy hydrocarbonaceous fresh oil feed is added to more than one hydroconversion zone. Additional portions of catalysts or catalyst precursors are also added to the first hydroconversion zone and to additional hydroconversion zones wherein said additional hydroconversion zones are maintained at a temperature of at least 10.degree. F. higher than an immediate preceding hydroconversion zone.
Abstract:
A catalyst comprising a composition comprising a catalytic metal component, carbon and hydrogen deposited on a low surface area metal or metal alloy support is provided. Hydrocarbon treating and conversion processes utilizing the catalyst are also provided. The catalyst is particularly suitable for slurry processes.
Abstract:
A process for catalytically hydroconverting a mixture of coal and a hydrocarbonaceous oil is effected by forming a mixture of a thermally decomposable metal compound, oil and coal, converting the compound to a catalyst within the mixture and reacting the mixture with hydrogen. Preferred compounds are molybdenum compounds.