Abstract:
Methods and apparatus are provided for sensing currents on a plurality of phases and determining current information therefrom. The multi-phase boost converter includes a single sensor coupled to all of the plurality of phases and a controller coupled to the sensor for determining the current information in response to currents on each of the plurality of phases sensed by the sensor. The sensing method utilizes the gate drive signals and the DC current sensor output to calculate the currents on each of the plurality of phases sensed by the sensor.
Abstract:
Systems and methods are provided for discharging a voltage bus. An electrical system comprises a first switch coupled to a first voltage rail, a second switch coupled between the first switch and a second voltage rail, and a control system coupled to the first switch and the second switch. The control system is configured to alternately activate the first switch and the second switch such that an energy potential between the first voltage rail and the second voltage rail is dissipated through the first switch and the second switch.
Abstract:
A method and system for determining a current flowing through an electrical component are provided. A switch electrically coupled to the electrical component and two voltage sources is activated. The activation of the switch causes current to flow through the electrical component after an amount of time. The amount of time between said activating the switch and the flow of current through the electrical component is determined. The current flowing through the electrical component is measured to determine a measured current value. The measured current value is modified based at least in part on the amount of time between said activating the switch and the flow of current through the electrical component.
Abstract:
Methods for controlling a multiple DC-to-AC inverter system, which is suitable for an electric or hybrid vehicle application, are disclosed. In one embodiment, if an inverter fails or suffers from degraded performance (faulty inverter), the faulty inverter is disabled and drive signals to a healthy inverter that is coupled to the faulty inverter are updated such that the healthy inverter can remain active without being driven into an over-current condition.
Abstract:
A rotor for an interior permanent magnet machine has a rotor body having an output shaft and a first cavity filled with magnetic material. Second cavities are disposed inboard of the first cavities and are not filled with magnetic material. Non-magnetic rods extend through the second cavities and protrude beyond end faces of the rotor body. The rods are press-fit in blind bores formed in non-magnetic end plates disposed adjacent the end faces of the rotor body. Shrink disks are shrunk around projecting ends of the output shaft in abutting relation with the end plates. In order to prevent induced voltage from generating current in the cage formed by the rods and end plates, an oxide layer is disposed between the rods and blind bores in the end plates.
Abstract:
An apparatus includes a multi-phase inverter, a fault detector to indicate a detection of a fault, a sensor to provide a speed signal indicative of whether a speed of a PM motor is greater than a transition speed, and a controller. The controller is operable to apply either an open-circuit response or a short-circuit response to the multi-phase inverter. The open-circuit response is applied when the speed of the PM motor is greater than the transition speed and a fault is detected. The short-circuit response is applied when the speed of the PM motor is less than the transition speed and the fault is detected. The transition speed is either a fixed predetermined speed or an adjusted predetermined speed.
Abstract:
A power supply generates alternating current and direct current from a constant-voltage source. A multi-phase pulse width modulation voltage source inverter is connected across the source to output multi-phase alternating current. At least one waveform generator is bridged in parallel with the inverter, with each waveform generator outputting zero-sequence waveform current compensated to maintain the multi-phase current within a predetermined tolerance from a desired set point. A rectifier receives the waveform current and generates direct current.
Abstract:
Methods and apparatus are provided for controlling a stand-alone four-leg three-phase inverter. The inverter three-phase output is converted from AC domain elements to corresponding DC domain elements. The DC domain elements are processed into combined regulating and imbalance compensating signals, including over-current limiting. The compensating signals are restored to corresponding AC domain signals, and are processed into control inputs for the inverter, in order to stabilize the inverter output when connected to an unbalanced load. The inverter controller can be implemented entirely in software as a control algorithm.
Abstract:
A control system and method for controlling an inverter used in an electric vehicle. The control system and method measures an average DC bus voltage and compares it to low voltage and high voltage thresholds defining predetermined conditions. If the voltage conditions are satisfied, the six-step mode is enabled based upon an applied torque command. Thus, if the torque command is higher than a high torque threshold, the six-step mode indefinitely enabled, and if the torque command is below the high torque threshold, the six-step mode is enabled for a limited time duration, and then disabled.
Abstract:
Power-generating apparatus and a voltage generation method employing null vector modulation for use with an electric vehicle. A DC power supply voltage is provided or generated from a power source and is inverted by a three-phase inverter to generate three phase AC that is supplied to an AC motor or load. One phase of the three phase AC is filtered and transformed by a DC rejection capacitor and single phase transformer of an auxiliary power supply to generate an AC voltage. The AC voltage is rectified and filtered by a rectifier and low pass filter of the auxiliary power supply to produce a DC output voltage. The one phase of the three phase AC and the DC output voltage are processed by a controller to control frequencies of null line-to-line zero voltage vectors during inversion so that the transformed AC voltage does not affect or is not seen by the AC motor or load. This allows for independent control of the voltage at the output of the auxiliary power supply.