Abstract:
A method of transferring data between devices in a computer system. In a preferred embodiment, a requesting device broadcasts a request for data to other devices in the computer system. The computer system identifies, from a plurality of responding devices within the computer system, a target device that contains the data. In response to a determination that the target device does not support higher-performance transactions, the computer system disables higher-performance transactions and transfers the data to the requesting device via a lower-performance transaction process.
Abstract:
Apparatus and methods for removing particle contaminants from a solid surface includes providing a layer of a viscoelastic material on the solid surface. The viscoelastic material is applied as a thin film and exhibits substantial liquid-like characteristics. The viscoelastic material at least partially binds with the particle contaminants. A high velocity liquid is applied to the viscoelastic material, such that the viscoelastic material exhibits solid-like behavior. The viscoelastic material is thus dislodged from the solid surface along with the particle contaminants, thereby cleaning the solid surface of the particle contaminants.
Abstract:
A technique for reducing store-hit-loads in an out-of-order processor includes storing a store address of a store instruction associated with a store-hit-load (SHL) pipeline flush in an SHL entry. In response to detecting another SHL pipeline flush for the store address, a current count associated with the SHL entry is updated. In response to the current count associated with the SHL entry reaching a first terminal count, a dependency for the store instruction is created such that execution of a younger load instruction with a load address that overlaps the store address stalls until the store instruction executes.
Abstract:
A pointer is for pointing to a next-to-read location within a stack of information. For pushing information onto the stack: a value is saved of the pointer, which points to a first location within the stack as being the next-to-read location; the pointer is updated so that it points to a second location within the stack as being the next-to-read location; and the information is written for storage at the second location. For popping the information from the stack: in response to the pointer, the information is read from the second location as the next-to-read location; and the pointer is restored to equal the saved value so that it points to the first location as being the next-to-read location.
Abstract:
A method for cleaning a substrate is provided that includes applying a liquid medium to a surface of the substrate such that the liquid medium substantially covers a portion of the substrate that is being cleaned. One or more transducers are used to generate acoustic energy. The generated acoustic energy is applied to the substrate and the liquid medium meniscus such that the applied acoustic energy to the liquid medium prevents cavitation within the liquid medium. The acoustic energy applied to the substrate provides maximum acoustic wave displacement to acoustic waves introduced into the liquid medium. The acoustic energy introduced into the substrate and the liquid medium enables dislodging of the particle contaminant from the surface of the substrate. The dislodged particle contaminants become entrapped within the liquid medium and are carried away from the surface of the substrate by the liquid medium.
Abstract:
A technique for reducing store-hit-loads in an out-of-order processor includes storing a store address of a store instruction associated with a store-hit-load (SHL) pipeline flush in an SHL entry. In response to detecting another SHL pipeline flush for the store address, a current count associated with the SHL entry is updated. In response to the current count associated with the SHL entry reaching a first terminal count, a dependency for the store instruction is created such that execution of a younger load instruction with a load address that overlaps the store address stalls until the store instruction executes.
Abstract:
An apparatus is provided that includes a substrate support assembly for holding the semiconductor substrate and a dispense head for applying a cleaning material to clean the contaminants from the substrate surface. The dispense head extends across a length of the semiconductor substrate and is positioned proximate to the substrate surface at a distance of between about 0.1 mm and about 4.5 mm. The proximate position enables application of a force to the cleaning material as it is applied to the substrate surface as a film, and the cleaning material provided through the dispense head contains a cleaning liquid, a plurality of solid components, and polymers of a polymeric compound, each of the plurality of solid components and polymers being greater than zero and less than 3% of the cleaning material, the plurality of solid components and the polymers are dispersed for application through the dispense head.
Abstract:
A method is provided for receiving the wafer on a support, the support being configured for movement along a direction. While moving the wafer, dispensing a cleaning material to clean contaminants from the surface of the wafer, the dispensing applied as a film over a diameter length of the wafer. The cleaning material contains a cleaning liquid, a plurality of solid components, and polymers of a polymeric compound. Each of the plurality of solid components and polymers being greater than zero and less than 3% of the cleaning material, and wherein the polymers become soluble in the cleaning liquid and the solubilized polymers having long polymer chains that capture and entrap solid components and contaminants in the cleaning liquid. Then, rinsing the film off of the wafer with a rinsing meniscus. The rinsing meniscus applied along the diameter length of the wafer and the film is rinsed after the dispensing.
Abstract:
Apparatus and methods for removing particle contaminants from a solid surface includes providing a layer of a viscoelastic material on the solid surface. The viscoelastic material is applied as a thin film and exhibits substantial liquid-like characteristics. The viscoelastic material at least partially binds with the particle contaminants. A high velocity liquid is applied to the viscoelastic material, such that the viscoelastic material exhibits solid-like behavior. The viscoelastic material is thus dislodged from the solid surface along with the particle contaminants, thereby cleaning the solid surface of the particle contaminants.
Abstract:
The embodiments provide apparatus and methods for removing particles from a substrate surface, especially from a surface of a patterned substrate (or wafer). The cleaning apparatus and methods have advantages in cleaning patterned substrates with fine features without substantially damaging the features on the substrate surface. The cleaning apparatus and methods involve using a viscoelastic cleaning material containing a polymeric compound with large molecular weight, such as greater than 10,000 g/mol. The viscoelastic cleaning material entraps at least a portion of the particles on the substrate surface. The application of a force on the viscoelastic cleaning material over a sufficiently short period time causes the material to exhibit solid-like properties that facilitate removal of the viscoelastic cleaning material along with the entrapped particles. A number of forces can be applied over a short period to access the solid-like nature of the viscoelastic cleaning material. Alternatively, when the temperature of the viscoelastic cleaning material is lowered, the visoelastic cleaning material also exhibits solid-like properties.