Abstract:
A bicycle hub includes a hub axle, a hub body, a bearing unit and a lock member. The hub axle is configured and arranged to be non-rotatably coupled to the bicycle frame by a mounting shaft. The hub body has a generally cylindrical shape mounted adjacent to an external perimeter of the hub axle. The bearing unit is installed between the hub body and the hub axle at one axial end portion of the bicycle hub so that the hub body freely rotates with respect to the hub axle. The bearing unit includes an outer ring, an inner ring and a plurality of rolling components. The lock member is configured and arranged to retain an axial position of the outer ring of the bearing unit with respect to the hub body by locking the outer ring in one of a plurality of rotational positions.
Abstract:
An assisting apparatus for using power from a rotating member to assist the operation of a bicycle transmission includes a mounting unit; an input transmission member coupled to the mounting unit, wherein the input transmission member moves to at least a neutral position, to an upshift position and to a downshift position; and an output transmission member coupled to the mounting unit, wherein the output transmission member moves to at least a first output position and a second output position. A rotating member engaging member moves between a rotating member engaging position and a rotating member disengaging position, and a motion transmitting mechanism transmits motion from the rotating member engaging member to the output transmission member. A switching mechanism moves the rotating member engaging member to the rotating member engaging position when the input transmission member is in at least one of the upshift position and the downshift position.
Abstract:
A gear indicator for use on a bicycle is provided remotely from the shift operating device. The gear indicator is coupled to a shift operating device via an indicator cable. The gear indicator basically includes a housing with an indicator member slidably coupled to the indicator cable with in the housing. The location of the indicator member relative to the housing indicates a gear currently engaged by the chain. In the most preferred embodiments, an indicator member is frictionally mounted on the inner wire of the indicator cable for automatically adjusting of the indicator member in the event that the cable becomes elongated or the indicator member becomes misaligned. The housing has a biasing member coupled between one wall of an interior cavity and the first end of the inner wire of the cable indicator for biasing the indicator member to one of its end positions. An abutment or stopper is provided within the housing to engage indicator member to automatically adjust the indicator member along the cable in the event that the cable becomes elongated or the indicator member becomes misaligned. In other embodiments, a gear position indicia portion of the housing is frictionally coupled to the housing for manually or automatically adjusting the gear position indicia relative to the indicator member.
Abstract:
A multispeed bicycle having a plurality of front chainwheels, a plurality of rear gears, front and rear derailleurs, and a shifting apparatus operable by a single manual lever to actuate the front and rear derailleurs. The shifting apparatus includes a first actuating mechanism for actuating the front derailleur, a second actuating mechanism for actuating the rear derailleur, and a shift controller for controlling the actuating mechanisms. The shift controller is responsive to operation of the manual lever to drive the first actuating mechanism or second actuating mechanism to produce a speed stage, and responsive to repeated operation of the manual lever to produce all speed stages corresponding to all combinations of the front chainwheels and rear gears.
Abstract:
A bicycle shift operating device basically has a base member, a shift wire take-up element rotatably mounted with respect to the base member and a shifting unit operatively coupled to the shift wire take-up element to selectively rotate the shift wire take-up element in first and second rotational directions about a pivot axis. The shifting unit includes a shift operating member pivotally mounted with respect to the base member along a pivotal path to operate the shift wire take-up element in the first rotational direction in response to pivotal movement of the shift operating member about an operating axis. The shift operating member is movably mounted with respect to the base member along a non-pivotal path to operate the shift wire take-up element in the second rotational direction in response to non-pivotal movement of the shift operating member with respect to the operating axis.
Abstract:
A continuous, one-piece bicycle frame end includes a forward portion and a rearward portion, wherein the forward portion extends from a chain stay and a seat stay, and wherein the rearward portion extends rearward from the forward portion. The frame end defines an axle receiving opening dimensioned to receive a bicycle wheel axle therein to rotate around a rotational axis. The axle receiving opening is intersected by a horizontal axis of a Cartesian coordinate system, wherein the axle receiving opening forms the origin of the Cartesian coordinate system, and the zero axis of the Cartesian coordinate system is the portion of the horizontal axis forward of the origin. A derailleur-attachment structure is located from approximately 180° to approximately 240° in the Cartesian coordinate system.
Abstract:
A bicycle drive apparatus includes a bicycle crankset, a bicycle transmission, a drive assistance electric motor and a microcomputer. The microcomputer includes an output control section, a gear shift feasibility determining section and a gear shift control section. The output control section controls an output of the drive assistance electric motor. The gear shift feasibility determining section determines if an output condition of the bicycle crankset satisfies a gear shift allowable condition. The gear shift control section receives a gear shift request, instructs the output control section to at least one of stop the output of the drive assistance electric motor and decrease the output of the drive assistance electric motor, and instructs the transmission to execute a gear shifting operation upon the gear shift permission determining section determining that the gear shift allowable condition is satisfied.
Abstract:
A bicycle power supply system comprises a first power supply, a second power supply, and a power supply level sensing structure. The power supply level sensing structure is operatively coupled to the first and second power supplies. The first and second power supplies are selectively electrically coupled with electrical power being supplied from the second power supply to the first power supply while a first power supply level is detected by the power supply level sensing structure to be below a first prescribed power threshold, and with electrical power being supplied from the first power supply to the second power supply while a second power supply level is detected by the power supply level sensing structure to be below a second prescribed power threshold.
Abstract:
A bicycle braking system is basically provided with a bicycle braking device, a supplementary brake operating device and a brake maintaining arrangement. The bicycle braking device is movably between a non-brake applying position and a brake applying position for applying a braking force. The supplementary brake operating device is operatively coupled to operate the bicycle braking device. The supplementary brake operating device includes a rider operating arrangement that is operable by a rider between a non-braking position and at least one predetermined braking position. The brake maintaining arrangement is configured and arranged to hold the bicycle braking device in the brake applying position in response to movement of the rider operating arrangement to the predetermined braking position such that the braking force of the bicycle braking device is continually and consistently applied.
Abstract:
A bicycle is provided with a frame, a drive member and a bicycle brake. The drive member is movably mounted to the frame for driving the bicycle. The bicycle brake is mounted to the frame. The bicycle brake includes a quick release mechanism that has an operating part and a contact part. The operating part is operatively arranged to be toggled between a closed position and a released position that is separated from the closed position. The contact part is provided on the operating part and configured such that the operating part contacts the drive member while the operating part is positioned at the released position. The contact part is configured such that after the contact part contacts the drive member due to operation of the drive member, the operating part is then moved from the released position to the closed position.