Abstract:
The present invention discloses a product obtainable by reacting a nano-scaled filler with a compound of the formula I AD-L-RG (I) wherein AD is an additive selected from the group of radical scavengers, hydroperoxide decomposers, UV-absorbers, light stabilizers, flame retardants or photoinitiators, L is a spacer, RG is a reactive group, and the nano-scaled filler can be of unmodified or organophilically modified character. These products are for example useful as stabilizers and/or compatibilizers in organic materials, or as photoinitiators in pre-polymeric or pre-crosslinking formulations.
Abstract:
This invention relates to a process for stabilising and at the same time phase compatibilising plastics or plastic compositions by incorporating polymeric compounds obtainable by reacting a compound selected from the group consisting of the sterically hindered phenols, sterically hindered amines, lactones, sulfides, phosphites, benzotriazoles, benzophenones and 2-(2-hydroxyphenyl)-1,3,5-triazines, which compounds contain at least one reactive group, with a compatibilisator.
Abstract:
This invention relates to a process for stabilising and at the same time phase compatibilising plastics or plastic compositions by incorporating polymeric compounds obtainable by reacting a compound selected from the group consisting of the sterically hindered phenols, sterically hindered amines, lactones, sulfides, phosphites, benzotriazoles, benzophenones and 2-(2-hydroxyphenyl)-1,3,5-triazines, which compounds contain at least one reactive group, with a compatibilisator.
Abstract:
By heating at above the melting point and/or glass transition point of the polycondensate and adding an aromatic dicyanate; or adding a mixture comprising an aromatic dicyanate and a polyfunctional compound selected from the class of sterically hindered hydroxyphenyl-alkyl-phosphonic esters and monoesters, diphosphonites and secondary aromatic amines; or adding a mixture comprising (i) an aromatic dicyanate, (ii) at least one polyfunctional compound selected from the class of sterically hindered hydroxyphenyl-alkyl-phosphonic esters and monoesters, diphosphonites and secondary amines, and (iii) a difunctional epoxide, it is possible to bring about an increase in the molecular weight and/or viscosity of virgin polycondensate and polycondensate recyclates.
Abstract:
Recycled mixtures of plastics, predominantly thermoplastics, as predominantly produced in the household, in commerce and also in industry and useful material collections, can be stabilized against thermooxidative degradation by adding a combination of a sterically hindered phenol with an organic phosphite or phosphonite and an inorganic compound from the series consisting of metal oxides, hydroxides and carbonates.
Abstract:
Recycled plastics, predominanty thermoplastics, from domestic, commercial and industrial waste can be stabilized against thermooxidative degradation by adding a combination of a sterically hindered phenol with an organic phosphite or phosphonite and a metal salt of a fatty acid.
Abstract:
An increase in the molecular weight of newly produced polyamides and recycled polyamide materials can be achieved by heating to above the melting point or glass transition point and adding of a bismaleimide and a sterically hindered hydroxyphenyl-alkyl-phosphonic acid ester or half-ester.