Abstract:
A carbon nanotube emitter and its fabrication method, a Field Emission Device (FED) using the carbon nanotube emitter and its fabrication method include a carbon nanotube emitter having a plurality of first carbon nanotubes arranged on a substrate and in parallel with the substrate, and a plurality of the second carbon nanotubes arranged on a surface of the first carbon nanotubes.
Abstract:
A Field Emission Display (FED) and a method of manufacturing the FED are provided. The FED includes a substrate; a plurality of under-gate electrodes formed parallel to one another on a top surface of a substrate; a plurality of cathode electrodes formed perpendicular to the under-gate electrodes on an upper portion of the under-gate electrode, each of cathode holes being formed in portions of the cathode electrodes that intersect with the under-gate electrodes; a plurality of emitters formed symmetrical with respect to centers of the cathode holes on the cathode electrodes; and a plurality of gate electrodes formed to be electrically connected to the under-gate electrodes in central portions of the cathode holes.
Abstract:
In a method of achieving uniform lengths of Carbon NanoTubes (CNTs) and a method of manufacturing a Field Emission Device (FED) using such CNTs, an organic film is coated to cover CNTs formed on a predetermined material layer. The organic film is etched to a predetermined depth to remove projected portions of the CNTs. After that, the organic film is removed.
Abstract:
An electronic device having an electrode made of metal that reacts easily with carbon is provided. In the electronic device, the electrode on which carbon nanotubes are deposited by a chemical vapor deposition method using a reactant gas containing carbon and oxygen, is made of a metal generating less reaction enthalpy when reacting with carbon than when reacting with oxygen. Since the electrode is made of a metal which reacts with carbon faster than oxygen, a carbonized metal layer is formed on the electrode, thereby preventing the electrode from being oxidized. Accordingly, the carbon nanotubes can be easily deposited on the electrode.
Abstract:
A field emission device and a field emission display (FED) using the same and a method of making the field emission device. The FED includes a glass substrate, a layer of a material formed on the glass substrate and having a concave portion, a cathode electrode formed on the material layer and also having a concave portion, electron emitters formed on the concave portion of the cathode electrode, a gate insulating layer formed on the cathode electrode and having a cavity communicating with the concave portion, and a gate electrode formed on the gate insulating layer and having a gate aperture aligned with the cavity.
Abstract:
A method of forming a Carbon NanoTube (CNT) structure and a method of manufacturing a Field Emission Device (FED) using the method of forming a CNT structure includes: forming an electrode on a substrate, forming a buffer layer on the electrode, forming a catalyst layer in a particle shape on the buffer layer, etching the buffer layer exposed through the catalyst layer, and growing CNTs from the catalyst layer formed on the etched buffer layer.
Abstract:
A method of manufacturing a Field Emission Display (FED) having a double gate structure using a half tone photomask includes sequentially forming a cathode material layer, a resistance material layer, and a photoresist on a substrate, arranging a half tone photomask on the photoresist, the half tone photomask having a first pattern that shields light and a second pattern that partially transmits light formed in respective predetermined shapes, exposing the photoresist to light to develop it, forming a resistance layer and a cathode electrode by sequentially etching the resistance material layer and the cathode material layer exposed through the developed photoresist, etching the developed photoresist until the resistance layer located on an upper part of a pad region of the cathode electrode is exposed, exposing the pad region of the cathode electrode by etching the resistance layer exposed through the etched photoresist, and removing the photoresist.
Abstract:
A field emission backlight unit for a liquid crystal display (LCD) includes: a lower substrate; first electrodes and second electrodes alternately formed in parallel lines on the lower substrate; emitters disposed on at least the first electrodes; an upper substrate spaced apart from the lower substrate by a predetermined distance such that the upper and lower substrates face each other; a third electrode formed on a bottom surface of the upper substrate; and a fluorescent layer formed on the third electrode. Since the backlight unit has a triode-type field emission structure, field emission is very stable. Since the first electrodes and the second electrodes are formed in the same plane, brightness uniformity is improved and manufacturing processes are simplified. If the emitters are disposed on both the first electrodes and the second electrodes, and a cathode voltage and a gate voltage are alternately applied to the first electrodes and second electrodes, the lifespan and brightness of the emitters can be improved. The above advantages are also achieved as a result of the method of driving the backlight unit and the method of manufacturing the lower panel thereof.
Abstract:
A triode carbon nanotube field emission display (FED) using a barrier rib structure and a manufacturing method thereof are provided. In a triode carbon nanotube FED employing barrier ribs, barrier ribs are formed on cathode lines by a screen printing method, a mesh structure is mounted on the barrier ribs, and a spacer is inserted between the barrier ribs through slots of the mesh structure, thereby stably fixing the mesh structure and the spacer within a FED panel due to support by the barrier ribs.
Abstract:
A field emission device includes a substrate including a groove; a metal electrode disposed on a bottom surface of the groove; and a carbon nanotube (“CNT”) emitter. The CNT emitter includes an intermetallic compound layer disposed on the metal electrode and CNTs disposed on the intermetallic compound layer.