Abstract:
An electrochemical power delivery voltage regulator. The regulator includes one or more fluid circuits having a first electrolyte solution with a primary redox couple and a secondary redox couple; and a second electrolyte solution with a further primary redox couple; a polyelectrode in contact with the first electrolyte solution; a further electrode in contact with the second electrolyte solution; and control means coupled to control a relative concentration of electroactive species of the secondary redox couple and thereby impact a mixed potential at the polyelectrode, such as to regulate a supply voltage of the electrochemical power delivery voltage regulator, in operation. The invention further concerns a corresponding method of voltage regulation and a system comprising such an electrochemical power and electrical consumers with consumer fluid circuits in fluid communication with respective one or more fluid circuits of the electrochemical power delivery voltage regulator.
Abstract:
A programmable magnetoresistive memory cell. The memory cell has a magnetic element that includes a first and a second ferromagnetic layer. The first and second ferromagnetic layers are separated by a non-ferromagnetic and preferably electrically insulating spacer layer. The data bit is read out by measuring the electrical resistance across the magnetic element. The memory cell further includes: a third ferromagnetic layer having a well-defined magnetization direction and a resistance switching material having a carrier density. The carrier density can be altered by causing an ion concentration to become altered by means of an applied electrical voltage signal. Thus, the carrier density can be switched between a first and second state.
Abstract:
A microelectronic device or non-volatile resistance switching memory comprising the switching material for storing digital information. A process includes a step of depositing the switching material by a CMOS deposition technique at a temperature lower than 400° C.
Abstract:
An electro-optical device having a non-volatile programmable refractive index. The device includes: a waveguiding structure with waveguiding material, the waveguiding structure defining an optical beam path, where the waveguiding structure includes a transition metal oxide with oxygen vacancies that migrate when exposed to an electric field; and a plurality of electrodes for applying an electric field to a region including the transition metal oxide with oxygen vacancies; where the transition metal oxide and the electrodes are arranged such that under the applied electric field the oxygen vacancies migrate in a direction that has a component which is radial relative to a center of the beam path. Further, there is provided a method for making the electro-optical device, including: fabricating the waveguiding structure; positioning a plurality of electrodes for application of an electric field; and arranging the transition metal oxide and the electrodes.
Abstract:
A complementary logic element including first and second transistor elements. The first and second gate electrodes of the two transistor elements are electrically parallel to form a common gate. Both the coupling layers of the first and the second transistor element include a resistance switching material, a conductivity of which may be altered by causing an ion concentration to alter if an electrical voltage signal of an appropriate polarity is applied. The first and second transistor elements also include an ion conductor layer that is capable of accepting ions from the coupling layer and of releasing ions into the coupling layer. The coupling layers and ion conductor layers are such that the application of an electrical signal of a given polarity to the gate enhances the electrical conductivity of the first coupling layer and diminishes the electrical conductivity of the second, or vice versa.
Abstract:
A memory element comprises a first number of electrodes and a second number of electrically conducting channels between sub-groups of two of said electrodes, the channels exhibiting an electrical resistance that is reversibly switchable between different states, wherein the first number is larger than two and the second number is larger than the first number divided by two. The electrically conducting channels may be provided in transition metal oxide material, which exhibits a reversibly switchable resistance that is attributed to a switching phenomenon at the interfaces between the electrodes and the transition metal oxide material.
Abstract:
A nonvolatile memory array includes a plurality of word lines, a plurality of bit lines, a plurality of source lines, and a plurality of nonvolatile memory cells. Each of at least a subset of the plurality of memory cells has a first terminal connected to one of the plurality of word lines, a second terminal connected to one of the plurality of bit lines, and a third terminal connected to one of the plurality of source lines. At least one of the memory cells includes a bipolar programmable storage element operative to store a logic state of the memory cell, a first terminal of the bipolar programmable storage element connecting to one of a corresponding first one of the bit lines and a corresponding first one of the source lines, and a metal-oxide-semiconductor device including first and second source/drains and a gate. The first source/drain is connected to a second terminal of the bipolar programmable storage element, the second source/drain is adapted for connection to a corresponding second one of the bit lines, and the gate is adapted for connection to a corresponding one of the word lines. For at least a subset of the plurality of memory cells, each pair of adjacent memory cells along a given word line shares either the same bit line or the same source line.