Abstract:
The present invention relates to a method for treating fragments of polyvinyl butyral (PVB) in which glass shards are encrusted in or on the surface of the PVB. The method involves placing PVB fragments in contact with an aqueous solution comprising a cationic surfactant and a weak base, to obtain a mixture. This mixture, subjected to ultrasound within a defined temperature range, leads to separation of the glass shards and the PVB. In particular, the inventors have discovered that the combined, simultaneous, and complementary action of a weak base, a cationic surfactant, and ultrasound, at an appropriate temperature, made it possible to detach and/or unembed the glass shards fixed to the collected PVB without degrading the polymer matrix.
Abstract:
The object of the present invention is to produce a metal part equipped with a protection system, particularly for turbine blades for aircraft engines, having a thermal barrier that is improved in terms of thermal properties, adhesion to the part and resistance to oxidation/corrosion. In order to achieve this, the method according to the invention produces in a single step, from specific ceramics, coating layers using SPS technology.According to one embodiment, a metal part is produced according to an SPS flash sintering method and comprises a superalloy substrate (22), a metal sub-layer (21), a TGO oxide layer (25) and the thermal barrier (23) formed by said method from at least two chemically and thermally compatible ceramic layers (2a, 2b).A first ceramic (2a), referred to as the inner ceramic, is designed to have a substantially higher expansion coefficient. The outer ceramic (2b) is designed to have at least lower thermal conductivity, and a sintering temperature and/or maximum operating temperature that is substantially higher. The thermal barrier (23) has a composition and porosity gradient (3) from the metal sub-layer (21) to the outer ceramic (2b).
Abstract:
Alpha/alpha-prime/alkoxylated glycerol linear carbonic esters have formula (VI): where p is an integer higher than 1, x is an integer equaling 0 or 1 with x not always being zero, and M1 is hydrogen (H). Q1 can be a hydrocarbon aliphatic group, an amino hydrocarbon group or an oxygenated amino hydrocarbon group. G1 can be an α/α′-alkoxylated propyl group of general formula (II′): where R4, R5 and R6 are variously hydrogen (H), an alkyl or an amino-alkyl group having 1 to 5 carbon atoms, or general formula (VII): where R7 is a H or a hydrocarbon group having 1 to 6 carbon atoms, and m is an integer between 0 and 10 inclusive, and X is —O— or —NH—.
Abstract:
A method for synthesizing dimethyl carbonate from methanol and urea, in which a saline ureic medium is used that includes at least one inorganic salt selected from the group made up of zinc (Zn) (II) chloride, tin (Sn) chlorides and iron (Fe) (III) chloride, characterized in that: methanol, in the presence of a catalytic composition, is placed in contact with the saline ureic medium that is at least partially liquid at a temperature referred to as synthesis temperature, which is higher than 140° C., such that reaction vapors are produced; the reaction vapors are condensed, and a condensate of the reaction vapors is collected, including dimethyl carbonate; the method is carried out at atmospheric pressure. A method for enriching and purifying dimethyl carbonate is also described.
Abstract:
A method for equalizing a signal comprising modulated symbols comprising a block of N received symbols comprises: demultiplexing the N received symbols by factor L to generate a predetermined number L of sub-blocks of symbols, each comprising a version of the N received symbols sub-sampled by factor L, the independent equalization of each sub-block using an identical equalization algorithm, multiplexing the equalized symbols of each sub-block to obtain a block of N equalized symbols, removing instances of interference linked to paths other than two paths of higher power comprising generating an interference term resulting from the influence, on the equalized symbols, of all paths of the channel having the impulse response of the transmission channel except two paths of higher power, subtracting the interference term from the symbols of the block of N received symbols, and, a second equalization step equal to a second iteration of the first equalization step.
Abstract:
An electronic temperature sensor for measuring the junction temperature of an electronic power switch (4) of a static converter (8) includes an injection source of a calibrated measurement current (20) and a differential voltage measurement amplifier (76; 276). The electronic temperature sensor includes a first series connection (26) element and a second series connection (28) connected respectively to the inlet terminals (78, 80) of the differential voltage amplifier (76; 276). The first and second series connection elements (26, 28; 224, 226) are configured to protect the amplifier against a high voltage, have essentially identical electrical characteristics and are included in the set formed by resistances and high-voltage (HV) rapid diodes.
Abstract:
This device for determining wind speed comprises at least two laser sources emitting beams in different directions that are coplanar and such that each emission direction corresponds to a perpendicular emission direction. Each laser source is associated with focusing optics for focusing the emitted beam, a laser diode for receiving a reflected beam obtained after reflection by a particle present in the air of the corresponding emitted beam, a photodiode for transmitting an interference signal occurring between the emitted beam and the reflected beam, a processor for processing the obtained interference signals, and an optical cavity into which the reflected beam is reinjected in order to obtain an interference with the emitted beam.
Abstract:
A cell includes at least two semiconductor structures of the same nature, these two structures both employing voltages and currents that are unidirectional, each structure having an anode (10), a cathode (14) and optionally a gate (16). The structures are integrated into the volume of one and the same semiconductor substrate (4). The cathodes (14), and possibly the gates (16), are arranged on a first side of the semiconductor substrate (4). The anodes (10) are each arranged on a second side of the semiconductor substrate (4), which side is opposite the first side, facing the cathodes and possibly the corresponding gates. Two electrodes, anodes or cathodes, of two separate structures, are electrically connected to each other.
Abstract:
A method for preparing a fermented grape marc, which includes the following steps: preparing a grape marc infusion by placing grape marc in contact with water and optionally with a source of sugar chosen among sucrose, glucose syrup, or concentrated grape must; placing the grape marc infusion in contact with a scoby (also called “kombucha microbial consortium”) and optionally with kombucha; fermenting the grape marc infusion for a period ranging from 5 to 35 days, and preferably from 7 to 12 days. Also, fermented grape marc obtainable according to the method, as well as to the use thereof in dietary, nutraceutical, or nutricosmetic supplements, or in dermocosmetic products.
Abstract:
A magnetic circuit for creating a magnetic field in a main annular ionization and acceleration channel of a Hall-effect plasma thruster, having an open top end for emitting ions and a closed bottom end, includes outer magnets comprising a bottom annular outer magnet, and a top annular outer magnet disposed above the bottom outer magnet; inner magnets comprising a bottom inner magnet, of cylindrical form having a bottom part of a diameter less than the diameter of a top part, disposed below the top outer magnet, and a top annular inner magnet disposed above the bottom inner magnet; the outer magnets having a same pole (N, S) on their respective top face and an opposite same pole (S, N) on their bottom face; the inner magnets having an orientation of their poles that is the reverse of that of the outer magnets; and the outer magnets and the inner magnets being disposed above the closed bottom end of the annular channel.