Abstract:
A method is provided for filtering a scalable video stream, organized in the form of data unit blocks, each of which comprises a base data unit and a set of data units distributed according to two types of enhancement data, corresponding respectively to time and/or space and/or quality characteristics and making it possible to define several quality levels. The method defines at least two distinct filtering profiles, or paths of each block data units, wherein each path defines a row of successive foldover positions and each foldover position uses at least by one less data units than a previous position, and selects one of the paths according to a predetermined criterion, taking into account the type of content of the stream and/or at least one information item representing the capacities of a terminal receiving the stream.
Abstract:
A video image sequence is coded or decoded. By motion compensated temporal filtering, using discrete wavelet decomposition, the discrete wavelet is decomposed by dividing the video image sequence into source and destination groups of images. An image in the destination group is determined from at least one image including pixels in the first group of the source group. The representative image includes pixels and subpixels determined from pixels and subpixels obtained by upsampling at least one image in the source group.
Abstract:
The invention proposes a method of inserting a message in a subset (VO) of digital data representing physical quantities, characterized in that it includes the steps of: estimating (E4) a capacity to receive a message for said subset, selecting (E5) a message with a size less than or equal to the estimated capacity, in a set of a messages, inserting (E6) the selected message in the said subset of digital data. The invention applies particularly to an object in a digital image.
Abstract:
A method of transmitting blocks of data, in which, for at least one of the blocks of data, at least one parameter associated with this block of data is transmitted, the parameter representing the relative importance of the block of data associated with this parameter within the message transmitted by all the blocks of data. The data is coded by a channel coding method which does not take into account the parameter. Correlatively, the invention also concerns a decoding method associated with this transmission method. This way, data judged to be more important than other data may benefit from a channel decoding of higher quality. The methods described herein have application to devices and appliances implementing these methods.
Abstract:
The method of recording audiovisual contents broadcast according to a schedule includes: a step of selecting from an access terminal an audiovisual content to be recorded, the content being associated with a broadcast date and time, and a step of the access terminal receiving a record file of the selected audiovisual content, said file containing information identifying the audiovisual content and the scheduled date and time for broadcasting it. The record file further includes the address of an update server for generating a request to update the record file sent by the terminal to the update server.
Abstract:
Data associated with transmitted information over a communication network are transmitted. The data are divided into data groups. An information item representative of the importance of the data of the data group is associated with each data group. A transmission cycle for the data groups is determined. Each data group is inserted into the determined transmission cycle a number of times depending on the importance of the data of the data group.
Abstract:
A digital signal coding method includes a step of analysing the digital signal into a plurality of frequency sub-bands distributed according to at least two different resolutions, at least one first sub-band having a lower resolution and at least one second sub-band having a higher resolution. The method includes, for each second sub-band, the steps of dividing the second sub-bands into target blocks, selecting, for each of the target blocks, a predetermined number of source blocks in the at least one first sub-band, and determining, for each of the target blocks, a multilinear approximation between the source blocks selected at the preceding step and the target block.
Abstract:
The method for primary processing according to the invention takes into account a minimum dimension and a partition of a set of data into so-called “initial elementary” subsets (Ki). It includes: a) for each elementary subset which size is larger than the minimum dimension, one iteration of: a division suitability estimation step, and when appropriate, a step of “supplementary partitioning” of the said subset, b) a “construction” step of a global multidimensional mapping and non-linear mapping, the restrictions of the global mapping to the elementary subsets (Ki) being composed of elementary mappings, the fixed point of the global mapping constituting an approximation of all or part of this set, the set of parameters (ai, b) determined by the restrictions constituting an approximation of the said set of data.
Abstract:
A digital communication converter includes: a connection unit with a communication unit from which it receives or to which it delivers data frames; and a unit for sending/receiving over a transmission medium in order to transmit, by means of the medium, data frames which are delivered to it and/or to deliver information frames which it receives by means of the medium. A transmission control unit delivers, respectively to the connection unit and the sending/receiving unit, frames which have been delivered to it respectively by the sending/receiving unit and by means of the connection unit. A memory stores an address relating to the communication unit, this address being used for operating a protocol for controlling access to the transmission medium.
Abstract:
A method and device are provided for encoding at least one image broken up into blocks. The method includes, for at least one current block, transforming the current block from the spatial domain into a transformed domain, outputting a transformed block including of a set of coefficients representative of the current block, referred to as original coefficients. The method further includes selecting a subset of original coefficients from the set and, for at least one original coefficient of the subset, the following steps: estimating the original coefficient, outputting an estimated coefficient in the transformed domain; determining a residual of a coefficient by comparing the original coefficient and the estimated coefficient; and encoding the residual of a coefficient.