Abstract:
The structure includes a plurality of first ring shape structure formed on a semiconductor wafer to act as the gates of the MOS devices. The areas in the inner side of the first ring shape structures are drain regions. A plurality of source regions having second ring shape structures are formed around each sides the first ring shape structures. A p conductive type region is formed in the wafer adjacent to the source regions. A third ring shape structure is formed in the semiconductor wafer to surround the p+conductive type region for serving as a guard ring.
Abstract:
An ensemble of test structures comprising arrays of polysilicon plate MOS capacitors for the measurement of electrical quality of the MOSFET gate insulation is described. The test structures also measure plasma damage to these gate insulators incurred during metal etching and plasma ashing of photoresist. The structures are formed, either on test wafers or in designated areas of wafers containing integrated circuit chips. One of the test structures is designed primarily to minimize plasma damage so that oxide quality, and defect densities may be measured unhampered by interface traps created by plasma exposure. Other structures provide different antenna-to-oxide area ratios, useful for assessing plasma induced oxide damage and breakdown. The current-voltage characteristics of the MOS capacitors are measured by probing the structures on the wafer, thereby providing timely process monitoring capability.
Abstract:
An electrostatic discharge (ESD) protective circuit for reducing the electron-tunneling phenomena in NMOS devices. Several complementary metal oxide semiconductor (CMOS) devices act as an ESD protective circuit from being destroyed. The CMOS devices are connected to an internal circuit and a power line provide a bias voltage for the devices. The drains of the CMOS devices are connected to a pad to output a driving current. A NMOS device is connected between the internal circuit and the ESD protective circuit for protecting the NMOS devices in the circuit. As an ESD pulse is input into the ESD protective circuit, the NMOS device is then turned on by the pulse. Thus, positive charges on the gate of the NMOS devices in the ESD circuit is conducted into ground. Therefore, the NMOS device between the internal circuit and the ESD circuit can prevent the gate oxide of the NMOS device in the circuit from damage.
Abstract:
A method to erase data from a flash EEPROM cell while electrical charges trapped in the tunnel oxide of a flash EEPROM cell are eliminated to maintain proper separation of the programmed threshold voltage and the erased threshold voltage after extended programming and erasing cycles. The method to erase a flash EEPROM cell begins by first applying a first relatively high positive voltage pulse to the source of the flash EEPROM cell. Simultaneously a ground reference voltage is applied to the control gate and to the semiconductor substrate. At this same time the drain is floating. The flash EEPROM cell is then detrapped by floating the source and drain and applying a second relatively high positive voltage pulse to the semiconductor substrate. At the same time a relatively large negative voltage pulse is applied to the control gate.
Abstract:
An apparatus and method are disclosed for enhancing the operation of ESD protective circuits in a VLSI chip, having first and second CMOS devices therein which prevent damage due to ESD events, the first device being connected between a Vss contact and an I/O Pad contact and the second device being connected between a Vcc contact and the I/O Pad contact, and including diffusions in the chip that form a first diode which turns ON when negative ESD stresses develops between one of the first and second contacts and the I/O Pad contact, and which form a NPN transistor and a second diode that turn ON when positive ESD stresses develop between one of the first and second contacts and the I/O Pad contact, and additionally having the Vss and Vcc sources capacitively coupled.
Abstract:
An apparatus and method are disclosed for enhancing the operation of an ESD protective circuit in a VLSI chip with a combination of elements for an SCR that lower the turn-on voltage of the SCR below the oxide breakdown voltage of the CMOS devices in the VLSI circuits. A low voltage trigger source is provided for the SCR by forming an N+-P-LDD junction between the SCR and a CMOS device incorporated therein. The prior art N-channel device used in triggering the known LVTSCR is modified by removing the rate electrode and thin oxide and implanting, adjacent the N+ drain region, a P-type lightly doped drain (P-LDD) region in the substrate to form the N+-P-L.DD junction. The turn-on voltage of this N+-P-LDD junction can be made lower than the oxide breakdown voltage of the CMOS devices by adjusting the P-LDD dosage. Junction breakdown causes a forward bias resulting in turn ON of the PNP bipolar device followed by turn ON of the interconnected NPN bipolar device to produce the high current flow through the SCR. Concern about damage to the gate oxide of the prior art NMOS is obviated as there is no longer a gate oxide.
Abstract:
The present invention provides method to erase flash EEPROMS devices using a positive sine waveform (Vs) and negative Vg that drives a cell in to snapback breakdown to remove trapped electron in the tunnel oxide and improve device performance. The snapback breakdown operation of one cell in the array lowers the tunnel oxide electric field for all cells in the array. The snapback breakdown generates a substrate current that reduces the electric field thereby reducing electron and hole trapping. The method comprises the steps of: (a) applying a positive sine waveform voltage (Vs) to a source region of said EEPROM device during an entire erase cycle; (b) grounding a well region of said EEPROM device during an entire erase cycle; (c) grounding a drain region of said EEPROM device during an entire erase cycle; (d) simultaneously applying a negative voltage (Vg) to a control gate of said EEPROM device during the entire erase cycle; and whereby the positive sine waveform to the source region reduce the electric field in a tunnel oxide layer which reduces the electron and hole trapping.
Abstract:
The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device includes: a first conductive type substrate, a second conductive type high voltage well, a gate, a first conductive type body region, a second conductive type source, a second conductive type drain, a first conductive type body electrode, and a first conductive type floating region. The floating region is formed in the body region, which is electrically floating and is electrically isolated from the source and the gate, such that the electrostatic discharge (ESD) effect is mitigated.
Abstract:
An ESD protection circuit includes a silicon controlled rectifier coupled between a circuit pad and ground for bypassing an ESD current from the circuit pad during an ESD event. An MOS transistor, having a source shared with the silicon controlled rectifier, is coupled between the pad and ground for reducing a trigger voltage of the silicon controlled rectifier during the ESD event. The silicon controlled rectifier has a first diode serially connected to a second diode in an opposite direction, between the pad and the shared source of the MOS transistor, for functioning as a bipolar transistor. In a layout view, a first area for placement of the first and second diodes is interposed between at least two separate sets of second areas for placement of the MOS transistor.
Abstract:
A semiconductor structure for electrostatic discharge protection is presented. The semiconductor structure comprises a grounded gate nMOS (GGNMOS) having a substrate, a gate electrode, a source region and a drain region. A plurality of contact plugs is formed on the source and drain side. A plurality of first level vias is electrically coupled to the GGNMOS and has a substantially asymmetrical layout in the source and drain regions. A second level via(s) re-routes the ESD current to the desired first level vias. The uniformity of the current flow in the GGNMOS is improved.