Abstract:
A high voltage (HV) device includes a well region of a first dopant type disposed in a substrate. A first well region of a second dopant type is disposed in the well region of the first dopant type. An isolation structure is at least partially disposed in the well region of the first dopant type. A first gate electrode is disposed over the isolation structure and the first well region of the second dopant type. A second well region of the second dopant type is disposed in the well region of the first dopant type. The second well region of the second dopant type is spaced from the first well region of the second dopant type. A second gate electrode is disposed between and over the first well region of the second dopant type and the second well region of the second dopant type.
Abstract:
A communication network comprises a first digital subscriber line (DSL) unit having a plurality of application ports and at least one DSL port; and a second DSL unit having a plurality of application ports and at least one DSL port; wherein the first DSL unit is communicatively coupled to the second DSL unit via a DSL pair coupled to the at least one DSL port in each of the first and second DSL units; and wherein each of the first and second DSL units are configured to receive a signal of a first interface format over one of the plurality of application ports, extract timeslots from the received first interface format signal, transmit the timeslots over the at least one DSL port, and use timeslots received over the at least one DSL port to generate at least one second signal of a dissimilar interface format.
Abstract:
Systems and methods for communicating faults across a communications network cross-connect are provided. In one embodiment, a method for communicating an alarm condition in a cross-connected network is provided. The method comprises providing a cross-connect having a first side and a second side, wherein the first side includes a plurality of interface ports and the second side includes an interface port; detecting a fault on a first interface port of the first side; and when a fault is detected on the first interface port of the first side, transmitting a signal on the interface port of the second side, the signal having a pre-defined alarm data pattern inserted into one or more time slots associated with the first interface port of the first side.
Abstract:
A phase difference measuring device includes a phase detector, a low-pass filter/voltage controlled oscillator, a reference signal selector for selecting either an internal reference signal or an external reference signal as a reference signal, a phase comparator for comparing an undertest signal with the selected reference signal and obtaining a phase difference between the two compared signal. The internal reference signal is selected when the undertest signal is a jittering signal, and the external reference signal is selected when the undertest signal is a wandering signal. The undertest signal, the selected reference signal, and a relatively high frequency clock signal from external are sent to the phase comparator and a phase difference between the undertest signal and the selected reference signal is counted by the relatively high frequency clock signal.
Abstract:
Systems and methods for communicating faults across a communications network cross-connect are provided. In one embodiment, a method for communicating an alarm condition in a cross-connected network is provided. The method comprises providing a cross-connect having a first side and a second side, wherein the first side includes a plurality of interface ports and the second side includes an interface port; detecting a fault on a first interface port of the first side; and when a fault is detected on the first interface port of the first side, transmitting a signal on the interface port of the second side, the signal having a pre-defined alarm data pattern inserted into one or more time slots associated with the first interface port of the first side.
Abstract:
A semiconductor structure for electrostatic discharge protection is presented. The semiconductor structure comprises a grounded gate nMOS (GGNMOS) having a substrate, a gate electrode, a source region and a drain region. A plurality of contact plugs is formed on the source and drain side. A plurality of first level vias is electrically coupled to the GGNMOS and has a substantially asymmetrical layout in the source and drain regions. A second level via(s) re-routes the ESD current to the desired first level vias. The uniformity of the current flow in the GGNMOS is improved.
Abstract:
A communication network comprises a first digital subscriber line (DSL) unit having a plurality of application ports and at least one DSL port; and a second DSL unit having a plurality of application ports and at least one DSL port; wherein the first DSL unit is communicatively coupled to the second DSL unit via a DSL pair coupled to the at least one DSL port in each of the first and second DSL units; and wherein each of the first and second DSL units are configured to receive a signal of a first interface format over one of the plurality of application ports, extract timeslots from the received first interface format signal, transmit the timeslots over the at least one DSL port, and use timeslots received over the at least one DSL port to generate at least one second signal of a dissimilar interface format.
Abstract:
An electrostatic discharge (ESD) protection circuit. The ESD protection circuit comprises a silicon controlled rectifier (SCR) device and a metal-oxide-semiconductor (MOS) triggering device. The SCR device has a cathode connected to a first fixed potential and an anode. The MOS triggering device has a gate and a source connected to the first fixed potential and a drain connected to the anode. In addition, the MOS triggering device is not physically disposed in the SCR device.
Abstract:
A high voltage (HV) device includes a well region of a first dopant type disposed in a substrate. A first well region of a second dopant type is disposed in the well region of the first dopant type. An isolation structure is at least partially disposed in the well region of the first dopant type. A first gate electrode is disposed over the isolation structure and the first well region of the second dopant type. A second well region of the second dopant type is disposed in the well region of the first dopant type. The second well region of the second dopant type is spaced from the first well region of the second dopant type. A second gate electrode is disposed between and over the first well region of the second dopant type and the second well region of the second dopant type.
Abstract:
A system and method is disclosed for implementing a new bipolar-based silicon controlled rectifier (SCR) circuit for an electrostatic discharge (ESD) protection. The SCR circuit comprises a bipolar device to be formed on a semiconductor substrate. The bipolar device comprises at least an N-well for providing a high resistance and a P+ material to be used as a collector thereof for further providing a high resistance. At least an Nmoat guard ring and a Pmoat guard ring surround the bipolar device, wherein when an ESD event occurs, the high resistance provided by the N-well and the P+ material of the bipolar device increases a turn-on speed.