Abstract:
A method of displaying a stereoscopic image provides first light having a first wavelength and second light having a second wavelength different from the first wavelength to the a display panel according to left-eye and right-eye images displayed on the display panel. Color correcting data are generated by correcting at least one of left-eye color data corresponding to the left-eye image and right-eye color data corresponding to the right-eye image such that a first color coordinate according to the first light and a second color coordinate according to the second light coincide with each other with respect to the same color. The left-eye and right-eye images are displayed using light having wavelengths different from each other, so that a display quality of the stereoscopic image may be enhanced.
Abstract:
A three-dimensional image display device includes a display and a polarization switching panel. The display includes a signal transmitter, and is configured to alternately display a left eye image and a right eye image. The polarization switching panel includes a signal receiver, an upper substrate, an upper electrode disposed on the upper substrate, a lower substrate, and a lower electrode disposed on the lower substrate. The signal transmitter and the signal receiver are synchronized by a 3D synchronization signal.
Abstract:
A display panel and a method for manufacturing the same are disclosed. The display panel includes: a first substrate, a touch spacer formed on a first substrate, a common electrode formed on the touch spacer, a second substrate opposing the first substrate, a sensing electrode facing the touch spacer on the second substrate and an alignment layer on the sensing electrode or the touch spacer, wherein the alignment layer has a thickness equal to or less than 500 Å.
Abstract:
A display apparatus includes a plurality of pixels. Each pixel includes a main pixel, a sub-pixel, and a boosting capacitor. The main pixel receives a data signal in response to a first gate signal and is charged with a main pixel voltage. The sub-pixel receives the data signal in response to a second gate signal, and is charged with a sub-pixel voltage. The boosting capacitor is provided between the main pixel and the sub-pixel to increase the main pixel voltage when the sub-pixel is charged with the sub-pixel voltage in response to the second gate signal.
Abstract:
A method of processing image data comprises storing image frame data in a first memory, repetitively reading the image frame data stored in the first memory to output high frequency image frame data and correcting the high frequency image frame data based on previous frame data.
Abstract:
A method of compensating image data, the method includes generating a compensation data of an image data in accordance with a temperature value by using a compensation data of a previous frame and a compensation data generated through a look-up table which is mapped with corresponding to a compensation data of a previous frame and a set temperature value which is smaller than and closest to the temperature value or which is greater than and closest to the temperature value among set temperature values.
Abstract:
A display apparatus includes a plurality of frame rate controllers that generate a motion interpolated intermediate image. The frame rate controllers exchange image information with adjacent frame rate controllers. According to the display apparatus, each frame rate controller displays the intermediate image on a corresponding display area based on the image information provided from the adjacent frame rate controller.
Abstract:
A method for displaying a three-dimensional (“3D”) image includes; dividing the 3D image input from an external device into a first image frame corresponding to a first eye of a viewer and a second image frame corresponding to a second eye of the viewer, and generating a first compensation frame and a second compensation frame subsequent to the first image frame and the second image frame, respectively, and displaying the first compensation frame and the second compensation frame on a display panel.
Abstract:
A display apparatus includes a plurality of frame rate controllers that generate a motion interpolated intermediate image. The frame rate controllers exchange image information with adjacent frame rate controllers. According to the display apparatus, each frame rate controller displays the intermediate image on a corresponding display area based on the image information provided from the adjacent frame rate controller.
Abstract:
A gate drive portion for a display device including multiple pixels having first and second sub-pixels includes a first shift register generating a first output signal in response to a first gate clock signal, a second shift register generating a second output signal in response to a second gate clock signal, a level shifter coupled to the first and second shift registers and amplifying the first and second output signals, and an output buffer coupled to the level shifter and generating first and second gate signals. The first gate signal is generated in synchronization with the first gate clock signal and the second gate signal is generated in synchronization with the second gate clock signal. Accordingly, the charging time of the first and second sub-pixels may be improved by separately driving the odd-numbered and even-numbered sub-pixels and the visibility of the LCD device may also be improved.