Abstract:
Provided is a uni-axial multi-stage radial gas expander which has a high degree of reliability and which can sufficiently cope with the conditions of a high pressure and a high pressure ratio. Two or more radial gas expander sections (11A, 11B) formed of two-or-more-stage impeller vanes (14a to 14h) arranged between bearings (21a, 21b) on a rotor shaft (13) consisting of a single shaft are housed in a signal casing (10).
Abstract:
An intermediate-pressure turbine is divided into a high-temperature, high-pressure side high-temperature, intermediate-pressure turbine section 11a and a low-temperature, low-pressure side low-temperature, intermediate-pressure turbine section 11b, the component members of the high-temperature, intermediate-pressure turbine section 11a are formed of austenitic heat-resistant steels or Ni-based alloys, and the high-temperature, intermediate-pressure turbine section 11a is operated by steam having a temperature of 650° C. or more. Other turbines are mainly formed of ferritic heat-resistant steels. Thus, a steam turbine power plant having high thermal efficiency and being economical can be provided.
Abstract:
A steam turbine includes a casing, a rotor arranged inside the casing so as to extend in an axial direction of the casing, a rotor disk integrally formed with the rotor, a rotor-side implanting portion formed in the rotor disk, a plurality of moving blades arranged on the rotor disk in a circumferential direction of the rotor, and a moving blade-side implanting portion formed in the moving blade, in which the moving blade-side implanting portions of the moving blades are engaged with the rotor-side implanting portions, respectively. A cooling medium flows through a gap formed at least on a blade portion side of the moving blade among gaps formed between the moving blade-side implanting portions and the rotor-side implanting portions.
Abstract:
High-temperature steam at 620° C. or higher is introduced to a reheat steam turbine 100, and a turbine rotor 113 of the reheat steam turbine 100 includes: a high-temperature turbine rotor constituent part 113a positioned in an area extending from a nozzle 114a on a first stage to a moving blade 115a on a stage where temperature of the steam becomes 550° C. and made of a corrosion and heat resistant material; and low-temperature turbine rotor constituent parts 113b connected to and sandwiching the high-temperature turbine rotor constituent part 113a and made of a material different from the material of the high-temperature turbine rotor constituent part 113a.
Abstract:
Monitoring a spectrum of an inter-leaved signal by a signal generator which inter-leaves two DAC outputs with the same sampling rate, while adjusting the output offset level of each DAC, the output amplitude level of each DAC, the output selection timing of each DAC, and the output renewal timing of each DAC.
Abstract:
An intermediate-pressure turbine is divided into a high-temperature, high-pressure side high-temperature, intermediate-pressure turbine section 11a and a low-temperature, low-pressure side low-temperature, intermediate-pressure turbine section 11b, the component members of the high-temperature, intermediate-pressure turbine section 11a are formed of austenitic heat-resistant steels or Ni-based alloys, and the high-temperature, intermediate-pressure turbine section 11a is operated by steam having a temperature of 650° C. or more. Other turbines are mainly formed of ferritic heat-resistant steels. Thus, a steam turbine power plant having high thermal efficiency and being economical can be provided.
Abstract:
The invention provides a system that associates data files with one another effectively to visually represent a relation among the data files and allows a user to easily understand relationship of contents of the data files. The system determines whether there is a parent data file for a selected retrieval object data file with reference to a contract association table and, if the parent data file is present, changes the retrieval object to the parent data file and repeats the processing. If the parent data file is not present, the system stores a present retrieval object data file as display data, that is, store a top data file as display data. Then, the system retrieves all data files associated with the top data file, stores the data files as display data, generates a relation diagram of the data files, and transmits the relation diagram to a user terminal.
Abstract:
The automated solution injection-discharge system is used as an APDS system to supply and discharge a dialysate and a patient's drain. And an automated solution injection-discharge system provides free of contamination and operation mistakes, and can accurately control the injected dialysate volume and the discharged dwell solution volume even when a patient does not maintain a fixed posture while replacing the solution.
Abstract:
The present invention is to provide a method for identifying an optical line easily and accurately regardless of the optical line length. A plurality of reflecting parts is placed on the optical line, and a combination of relative positions of the reflecting parts is changed for every optical line to form an identification code, and the relative positions of the reflecting parts are detected based on reflected lights when a detecting light is inputted to the optical line, so that the optical line is identified based on a result. Concretely, when the detecting light is inputted to one end of the optical line, the light is reflected at the plurality of the reflecting parts which form the identification code and comes back the input end. A combination of the relative positions etc. of the reflecting parts is changed for every optical line. To detect the relative positions of the reflecting parts which form the identification code, either the optical path difference of the reflected lights from the reflecting parts is measured or the time difference between the reflected lights come back from the reflecting parts is measured. Then, based on the result, the optical line can be identified.
Abstract:
A steam turbine 10 is comprised of a double-structured casing configured of an outer casing 21 and an inner casing 20, a turbine rotor 23 disposed through the inner casing and having a plurality of stages of moving blades 22 implanted, and a plurality of stages of stationary blades 25 disposed alternately with the moving blades 22 in the axial direction of the turbine rotor 23 in the inner casing 20. The steam turbine 10 is further provided with a discharge passage 30 which externally guides steam, which has flown in the inner casing and passed the final stage moving blades while performing expansion work, directly from the inner casing interior.