Abstract:
A resistance type touch display panel includes a first substrate and a second substrate disposed above the first substrate. The first substrate includes many scan lines and data lines defining many pixel regions on the first substrate, many pixel units and touch units. Each pixel unit is located in one of the pixel regions and electrically connected with one of the scan lines and data lines respectively. Each touch unit is electrically connected with one of the scan lines and data lines and distributed in at least two pixel regions. The second substrate includes many spacers, many touch protrusions and a common electrode covering the spacers and the touch protrusions. Each touch protrusion is located above one of the touch units and a gap is formed between the common electrode disposed on each touch protrusion and the touch unit.
Abstract:
An onion waveform generator and a spread spectrum clock generator (SSCG) using the same are provided. The onion waveform generator includes a value generation unit and an accumulating unit. The value generation unit outputs a counting value. The accumulating unit accumulates the counting value to output a waveform value. The accumulating unit switches from an increasing mode to a decreasing mode if the waveform value is a third boundary value, and the accumulating unit switches from the decreasing mode to the increasing mode if the waveform value is a fourth boundary value.
Abstract:
A touch panel includes a substrate, a touch-sensing circuit, a plurality of sensing signal transmission wires, a capacitance compensation conductor, and a sensing signal readout circuit. The touch-sensing circuit is disposed on the substrate. The sensing signal transmission wires are disposed on the substrate and electrically connected to the touch-sensing circuit. The capacitance compensation conductor is disposed over the sensing signal transmission wires. Capacitance of each sensing signal transmission wire is C1, and coupling capacitance between each sensing signal transmission wire and the capacitance compensation conductor is C2. The sensing signal readout circuit is electrically connected to the sensing signal transmission wires. In each sensing signal transmission wire, variation of summation of C1 and C2 is less than a readout resolution of the sensing signal readout circuit. Another touch panel using an electrostatic discharge conductor to adjust varied capacitances of sensing signal transmission wires is also provided.
Abstract:
A liquid crystal display (LCD) and an LCD panel thereof are provided. The structure of the pixel array of the LCD panel is the structure of the one third source driving (OTSD), and by which skillfully layout the coupled relationship among each pixel, each signal line and each scan line, such that the LCD panel can be driven by a column inversion to achieve the purpose of single-dot inversion displaying, and thus not only reducing the power consumption of the whole LCD, but also promoting the display quality.
Abstract:
A signal-driving system for constructing gate signals of liquid crystal display (LCD), includes a plural stage of cascaded shift register units. Each stage of shift register unit includes a first pull-up switch unit, which is turned on for outputting a gate pulse on an output of this stage, based on either the first clock signal or the second clock signal; a pull-up driving unit, which is used for providing a driving pulse via a node for driving the first pull-up switch unit; a first pull-down switch unit, which is turned on to connect the output to a low-level voltage source; a second pull-down switch unit, which is turned on to connect said node to the low-level voltage source; a carry buffer unit, which is used for providing a control pulse on the second pull-down switch unit of previous stage, based on either the first clock signal or the second clock signal, and thereby ensuring operation of each stage independent of gate pulse signals outputted from the other stages.
Abstract:
A shift register including shift register units substantially cascaded is disclosed. Each shift register unit is controlled by first and second clock signals opposite to each other for generating an output signal. Each shift register unit includes first and second switch devices and first and second devices. The first switch device provides the output signal through an output node. The first driving device drives the first switch device according to a first input signal to activate the output signal. The second driving device provides a first voltage signal, according to the first clock signal, to drive the first switch device and de-activate the output signal. When the first switch device de-activates the output signal, the second switch device provides the second voltage signal to the output node according to the second clock signal. A level of the first voltage signal is lower than a level of the second voltage signal.
Abstract:
A driving method of a pixel array is provided. The driving method is suitable for a pixel array comprising at least one pixel set in each pixel array, wherein at least one pixel set comprises a plurality of pixels. In the driving method, a voltage having substantially same phase is used to drive the pixel electrodes of the pixels in the same pixel set. In addition, voltages with phases substantially opposite to each other are used to drive the pixel electrodes of the pixels in two adjacent pixel sets. Furthermore, a single gate line is used to drive two adjacent pixels in two different pixel sets respectively. In addition, a single gate line is used to drive a first pixel in one of the pixel set and another pixel in an adjacent column of the first pixel, wherein a phase of the voltage of a pixel electrode of the first pixel and a phase of a voltage of a pixel electrode of the other pixel are substantially different.
Abstract:
A touch panel includes two substrates, a sealant positioned between the substrates, a liquid crystal layer disposed between the substrates and enclosed by the sealant, and a first and a second sensing zones disposed on the substrate, wherein the first sensing zone is enclosed by the second sensing zone, and the second sensing zone is enclosed by the sealant. The first and second sensing zones have at least a first sensor and at least a second sensor respectively. The first sensor has a first sensor gap, and the second sensor has a second sensor gap smaller than the first sensor gap.
Abstract:
The present invention relates to a liquid crystal display (LCD). The LCD includes a plurality of display units formed with a first substrate, a color matrix formed on the first substrate, and a common electrode formed on the color matrix, a second substrate spaced from the first substrate, a pixel electrode matrix formed on the second substrate, a liquid crystal material disposed between the common electrode and the pixel electrode matrix. The LCD includes a touch sensing member integrated onto the color matrix of the first substrate.
Abstract:
A capacitive touch panel and a display device using the capacitive touch panel are provided. The capacitive touch panel includes a first electrode layer, a second electrode layer, and a dielectric layer disposed between two layers. The first electrode layer has a plurality of first A electrode strings and first B electrode strings extended along a first direction. The first A electrode string and the first B electrode string respectively has a plurality of first direction electrodes. The second electrode layer has a plurality of second direction electrodes connected in series along a second direction. The first A and B electrode strings are disconnected in the first electrode layer while they are simultaneously detected for presence of signal variation.