Abstract:
Compositions, systems and methods for using a nanoparticle composite to act as a valve within a microfluidic conduit to regulate fluid flow therethrough are provided. The nanoparticle composite includes a core having magnetic particles and Au particles and includes a hydrogel coating surrounding the core. The size of the nanoparticle composite is controlled by causing the hydrogel coating to lose water or absorb water, thus decreasing or increasing the size of the nanoparticle composite within the microfluidic conduit.
Abstract:
Disclosed is a method of processing a polycrystalline nanoparticle. The method includes exposing a polycrystalline nanoparticle that includes at least two metal oxide crystallites bonded to each other to a chemical composition that includes a catalyst in order to at least partially separate the at least two metal oxide crystallites of the polycrystalline nanoparticle at an interface thereof.
Abstract:
Systems and methods of forming photocatalytic nanocapsules and photocatalytic fibers are disclosed. The methods can include encapsulating one or more photocatalytic nanoparticles in a shell including at least one nanopore. The methods can further include forming photocatalytic fibers from a solution having one or more photocatalytic particles in a polycarbosilane melt.
Abstract:
Systems and methods for sensing an applied local tactile pressure are disclosed. The methods can include directing light onto a tactile sensing element that includes a metal nanoparticle layer. The methods can further include receiving at least a portion of the light scattered from the metal nanoparticle layer. The methods can further include determining a local pressure exerted on the tactile sensing element based at least in part on a change in a surface plasmon resonance (SPR) spectrum of the received portion of the scattered light.
Abstract:
Systems and methods of forming an electrode on a substrate are disclosed. The methods can include applying a solution including metal ions and metal nanomaterials to a surface of a substrate. The methods further can include exposing a selected portion of the solution with light having a wavelength capable of inducing reduction of the metal ions, wherein the selected portion corresponds to at least a portion of the electrode.
Abstract:
The filter provided herein includes one or more nanofibers. In some examples of the filter, the nanofibers include one or more nanoparticles, in which the nanoparticles are at least partially surrounded by pockets.
Abstract:
A method of treating wood including providing wood having an outer layer, the outer layer including an acetylated wood cell wall; and applying a supercritical fluid mixture to the outer layer to form a treated wood, in which the supercritical fluid mixture includes a silicate precursor dissolved in a supercritical fluid, and in which the silicate precursor is attached to the acetylated wood cell wall in the treated wood is described. A glass fortified wood composition having: an acetylated wood cell wall; and a silicate precursor including a long chain alkyl group, in which the long chain alkyl group of the silicate precursor is embedded into the acetylated wood cell wall. A kit for treating wood is described including a silicate precursor; a supercritical fluid; and a catalyst capable of facilitating the formation of Si—O—Si linkages. The silicate precursor may be dissolved in the supercritical fluid.
Abstract:
Methods of treating wood including modifying a cell wall of the wood to be positively charged to form a cationic wood cell wall; and contacting a negatively charged silicon layer to the cationic wood cell wall to form a barrier, wherein the negatively charged silicon layer includes a silicate ester group, a silinol group, a silicon oxide group or a combination thereof are described. Treated wood compositions including a wood structure having an outer layer including a wood cell having a cell wall attached to a silicon layer which includes a silicate ester group, a silinol group, a silicon oxide group or a combination thereof are also described.
Abstract:
Compositions, systems and methods for using a nanoparticle composite to act as a valve within a microfluidic conduit to regulate fluid flow therethrough are provided. The nanoparticle composite includes a core having magnetic particles and Au particles and includes a hydrogel coating surrounding the core. The size of the nanoparticle composite is controlled by causing the hydrogel coating to lose water or absorb water, thus decreasing or increasing the size of the nanoparticle composite within the microfluidic conduit.