Abstract:
The present disclosure concerns reduction or mitigation of metal-contamination of polycrystalline silicon when held or stored in containers at least partially constructed of metal and/or having polysilicon contact surfaces at least partially of metal. In particular, the disclosure relates to a method of mitigating metal contamination of polycrystalline silicon from contact with a metal surface of a container by providing the surface with a protective layer comprising a microcellular elastomeric polyurethane.
Abstract:
A method and system for reduction or mitigation of metal contamination of polycrystalline silicon are disclosed. Metal contamination of granulate polycrystalline silicon, from contact with a metal surface of components of the supporting transportation and auxiliary infrastructure of a fluidized bed reactor unit, is mitigated by use of a protective coating comprising a microcellular elastomeric polyurethane.
Abstract:
A feeder operable to convey a divided solids material comprises a conduit and an actuator. The conduit has a hollow body with a length, a first end, a second end opposite the first end and a displaceable body segment defined along at least a portion of the length. The displaceable body segment has at least a first fixable location positionable at a first fixed location. The actuator is positioned to apply force to the conduit and is controllable to cause selected flow of divided solids material in a feed direction extending generally from the first end to the second end. Methods are also disclosed.
Abstract:
This disclosure concerns embodiments of an annealing device and a method for annealing granular silicon to reduce a hydrogen content of the granular silicon. The annealing device comprises at least one tube through which granular silicon is flowed downwardly. The tube includes a heating zone and (i) a residence zone below the heating zone, (ii) a cooling zone below the heating zone, or (iii) a residence zone below the heating zone and a cooling zone below the residence zone. An inert gas is flowed upwardly through the tube. The tube may be constructed from two or more tube segments. The annealing device may include a plurality of tubes arranged in parallel and housed within a shell. The annealing device and method are suitable for a continuous process.
Abstract:
This disclosure concerns embodiments of an annealing device and a method for annealing flowable, finely divided solids, such as annealing granular silicon to reduce a hydrogen content of the granular silicon. The annealing device comprises at least one tube through which flowable, finely divided solids are flowed downwardly. The tube includes a heating zone and (i) a residence zone below the heating zone, (ii) a cooling zone below the heating zone, or (iii) a residence zone below the heating zone and a cooling zone below the residence zone. An inert gas is flowed upwardly through the tube. The tube may be constructed from two or more tube segments. The annealing device may include a plurality of tubes arranged and housed within a shell. The annealing device and method are suitable for a continuous process.
Abstract:
Apparatus and methods for consolidating granular silicon and determining trace elements content of the consolidated silicon are disclosed. Silicon granules are placed in a vessel, and a silicon slug of known purity is embedded at least partially in the granules. The slug is preheated to a temperature sufficient to couple with an induction heater. As the silicon slug melts, silicon granules adjacent the molten silicon also melt. The vessel passes through an induction coil to successively inductively heat and melt regions of the silicon granules from the leading end to the trailing end with each region solidifying as the molten silicon exits the induction coil to provide a multicrystalline silicon ingot. The multicrystalline silicon ingot is sliced into wafers, which are analyzed by low-temperature Fourier transform infrared spectroscopy to determine levels of trace elements in the ingot.
Abstract:
Methods and apparatus for separating polysilicon powder from a mixture of granular polysilicon and polysilicon powder are disclosed. The method includes tumbling the polysilicon material in a tumbling device. The tumbling device includes a tumbler drum having one or more lifting vanes spaced apart from one another and extending longitudinally along an interior surface of the tumbler drum. The lifting vanes facilitate separation of polysilicon powder and granules as the tumbler drum is rotated about its longitudinal axis of rotation.
Abstract:
Fluidized bed reactor systems for producing high purity silicon-coated particles are disclosed. A vessel has an outer shell, an insulation layer inwardly of the outer shell, a concentric inner shell inwardly of the outer shell, and a concentric liner that is positioned inwardly of the inner shell and that defines a reactor chamber. The inner shell and liner are sealed together at their bottoms by an O-ring seal arrangement to prevent gas in the reactor chamber from entering a space between the inner shell and the liner. A central inlet nozzle produces a vertical gas plume in the reactor chamber.
Abstract:
Segmented silicon carbide liners for use in a fluidized bed reactor for production of polysilicon-coated granulate material are disclosed, as well as methods of making and using the segmented silicon carbide liners. Non-contaminating bonding materials for joining silicon carbide segments also are disclosed. One or more of the silicon carbide segments may be constructed of reaction-bonded silicon carbide.
Abstract:
Segmented silicon carbide liners for use in a fluidized bed reactor for production of polysilicon-coated granulate material are disclosed, as well as methods of making and using the segmented silicon carbide liners. Non-contaminating bonding materials for joining silicon carbide segments also are disclosed. One or more of the silicon carbide segments may be constructed of reaction-bonded silicon carbide.