Abstract:
Described embodiments include a system, method, and computer program product. A described system includes a receiver circuit that receives a first medical image. The first medical image includes a selected target region of interest of an individual patient's body part, and a landmark subsurface feature of the individual patient's body part having a first spatial relationship with the selected target region. The receiver circuit receives a second medical image that includes a candidate region of interest of the individual patient's body part, and a landmark feature of the individual's patient body part having a second spatial relationship with the candidate region. A feature matching circuit determines a correspondence between the candidate landmark subsurface feature and the associated landmark subsurface feature. A reporting circuit generates informational data indicating the second medical image includes at least a portion of the selected target region of interest. A communication circuit outputs the informational data.
Abstract:
A method may include processing two or more fiducials included in a three-dimensional medical image and included in a current image to generate two or more transform coefficients of a transform, and applying the transform to the three-dimensional medical image to form a present image.
Abstract:
A computer or entertainment system is configured to respond to data received from a micro impulse radar configured to detect movement, physiology, posture, presence, and/or absence of a person in one or more regions near the computer or entertainment system.
Abstract:
Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
Abstract:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to automatically translate utterances from a first to a second language, based on speaker-related information determined from speaker utterances and/or other sources of information. In one embodiment, the AEFS receives data that represents an utterance of a speaker in a first language, the utterance obtained by a hearing device of the user, such as a hearing aid, smart phone, media player/device, or the like. The AEFS then determines speaker-related information associated with the identified speaker, such as by determining demographic information (e.g., gender, language, country/region of origin) and/or identifying information (e.g., name or title) of the speaker. The AEFS translates the utterance in the first language into a message in a second language, based on the determined speaker-related information. The AEFS then presents the message in the second language to the user.
Abstract:
Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
Abstract:
Systems and methods are described relating to accepting a mobile device location query using digital signal processing and presenting an indication of location of the mobile device at least partially based on receiving the location query. Additionally, systems and methods are described relating to means for accepting a mobile device location query using digital signal processing and means for presenting an indication of location of the mobile device at least partially based on receiving the location query.
Abstract:
One or more human attributes extracted from a micro-impulse radar (MIR) signal is correlated to a temporary identity or phenotypic identity of a person.
Abstract:
Appurtenances to wound dressings can include: a substrate configured to attach to a wound dressing; a fluid-activated voltaic cell attached to the substrate; a transmission unit attached to a surface of the substrate, the transmission unit including circuitry and at least one antenna, the transmission unit configured to transmit a signal in response to current generated by the fluid-activated voltaic cell; and a projection operably attached to the fluid-activated voltaic cell, the projection of a size and shape to extend into an interior region of the wound dressing and configured to sample a fluid within the interior region of the wound dressing.
Abstract:
Exemplary embodiments enable an enhanced direct-viewing optical device to make customized adjustments that accommodate optical aberrations of a current user. In some instances a real-time adjustment of the transformable optical elements is based on known corrective optical parameters associated with a current user. In some implementations a control module may process currently updated wavefront measurements as a basis for determining appropriate real-time adjustment of the transformable optical elements to produce a specified change in optical wavefront at an exit pupil of the direct-viewing device. Possible transformable optical elements include refractive and/or reflective and/or diffractive and/or transmissive characteristics that are adjusted based on current performance viewing factors for a given field of view of the direct-viewing device. Dynamic repositioning and/or transformation of corrective optical elements may be based on a detected shift of a tracked gaze direction of a current user of the direct-viewing device.