Abstract:
A method of making a part includes introducing expandable material into a cavity of a mold containing a substrate, the mold including at least one projection extending into the cavity. The method further includes retracting the at least one projection to allow the expandable material to expand in the cavity, such that the expandable material forms an expanded material layer on the substrate.
Abstract:
In at least certain embodiments, the present invention relates to a trim panel made by providing a molding tool system comprising a first mold half, a second mold half, and a third mold half and positioning the first mold half and the second mold half proximate each other to form a first mold cavity. In certain embodiments, the method further comprises introducing a first resin into the first mold cavity to form a trim panel skin and positioning the first mold cavity with the trim panel skin and the third mold half with a trim panel substrate spaced from the trim panel skin to form a second mold cavity. In this embodiment, the method further comprises introducing a second resin into the second mold cavity to form a resilient layer extending between and connecting the trim panel skin and the trim panel substrate.
Abstract:
In at least certain embodiments, the present invention relates to automobile interior door panel having an insert molded bolster. In at least one embodiment, the automobile interior door panel is made by providing a bolster within a first mold cavity, introducing a first resin into the first mold cavity to form a door panel sub assembly comprising a door panel portion secured to the bolster, with the door panel portion having a first upper door panel portion above the bolster and a lower door panel portion below the bolster, providing the door panel sub assembly within a second mold cavity, and introducing a second resin less rigid that the first material into the second mold cavity to form a second upper door panel portion over and secured to the first upper door panel portion.
Abstract:
In at least one embodiment, the present invention relates to a trim panel for concealing an air bag. The panel comprises a substrate and a cover over the substrate. The cover includes a cover skin. The panel also comprises a tear seam having at least a portion comprising a pattern of alternating residual wall thicknesses in the panel. At least one embodiment of the present invention also relates to a method for making a trim panel for concealing an air bag.
Abstract:
A foldable sheet for making a storage box for a vehicle. The foldable sheet has multiple portions foldably connected together along at least one fold line. The portions are foldable to at least a partially define a storage box. A hinge may be configured to allow the storage box to pivot with respect to the vehicle.
Abstract:
A door trim panel for a door frame of a motor vehicle. The door trim panel includes a main body portion adapted to be removably secured to the door frame and a bolster removably secured to the main body portion. The bolster covers an access opening in the main body portion. The bolster includes a substrate having a bolster portion integrally formed with an armrest portion. A cover is integrally molded with the substrate and includes a first portion overlying the bolster portion and having a first thickness, and a second portion overlying the armrest portion and having a second thickness greater than the first thickness to provide a softer feel. The bolster may be made in a two shot molding process with the substrate being formed in the first shot of the molding process and the multi-feel cover being formed in the second shot of the molding process.
Abstract:
A vehicle storage assembly includes a storage compartment having an opening to permit access to the compartment. A door adjacent the opening is moveable between a closed position that covers the opening and an open position that permits access to the compartment through the opening. The storage assembly further includes a controllable damper coupled to the door and actuable between high and low damping states, such that the door is maintained in one of the closed position, the open position, or any position therebetween when the controllable damper is in the high damping state. To move the door to a new position, the controllable damper is actuated from the high damping state to the low damping state whereby the door can then be freely moved to the desired position. The controllable damper may then be actuated from the low damping state to the high damping state to retain the door in the selected position.
Abstract:
The present invention provides for an improved armrest with a soft feel for use in a trim assembly, and to a continuous two-shot molding operation that may be continuously performed utilizing a single mold assembly. In an exemplary embodiment, a trim assembly includes an integrated armrest formed by injecting a first material into a first shot mold cavity in a first shot of a molding operation. An armrest cover is molded to at least a portion of the armrest by injecting into a mold chamber a second foamed material in a second shot of the molding operation to provide the armrest with a soft feel. The second foamed material includes a foamed material that produces a soft, outer skin and a light, cellular inner core such that when a force is applied to the cover, the skin will deform and compress the inner core, providing a soft-touch feel to the armrest.
Abstract:
The present invention provides for an improved trim part, such as an automotive handle, with a soft feel, for use in a trim assembly, and to a continuous two-shot molding operation that may be continuously performed utilizing a single mold assembly. In an exemplary embodiment, an automotive handle includes a substrate formed by injecting a first material into a first shot mold cavity in a first shot of a molding operation. A handle cover is molded to at least a portion of the substrate by injecting into a mold chamber a second foamed material in a second shot of the molding operation to provide the handle with a soft feel. The second foamed material includes a foamed material that produces a soft, outer skin and a light, cellular inner core such that when a force is applied to the cover, the skin will deform and compress the inner core, providing a soft-touch feel to the handle.
Abstract:
A method and apparatus for forming an interior component part having a relatively rigid substrate portion and a padded portion. The molding tool used to form the substrate portion includes a first mold part and a second mold part that form a substrate molding cavity into which a thermoplastic olefin is injected. The padded portion is formed by the first mold part and a third mold part that define a pad forming cavity. A mixture of a thermoplastic elastomer and a blowing agent is injected into the pad forming cavity. The expanded blown elastomer is enveloped within a skin formed when the blown elastomer contacts a cooled mold surface.