Abstract:
A beam detector including a light source, a receiver, and a target, acting in cooperation to detect particles in a monitored area. The target reflects incident light, resulting in reflected light being returned to receiver. The receiver is capable of recording and reporting light intensity at a plurality of points across its field of view. In the preferred form the detector emits a first light beam in a first wavelength band; a second light beam in a second wavelength band; and a third light beam in a third wavelength band, wherein the first and second wavelengths bands are substantially equal and are different to the third wavelength band.
Abstract:
A method of detecting one or more blocked sampling holes in a pipe of an aspirated smoke detector system. The method includes ascertaining the base flow of fluid through a particle detector using a flow sensor; monitoring subsequent flow through the particle detector; comparing the subsequent flow with the base flow; and indicating a fault if the difference between the base flow and the subsequent flow exceeds a predetermined threshold.
Abstract:
A sampling point for use with an aspirating particle detection system. The sampling point includes: a body; a plurality of apertures in the body for drawing an air sample from an ambient environment; an outlet for delivering the sampled air, at a predetermined sample flow rate, from the body into a sampling pipe of the network of sampling pipes; and a means for maintaining the predetermined sample flow rate regardless of the presence or absence of ambient flow of air about the body. A particle detection system, and air sampling system are also described.
Abstract:
A smoke detecting method which uses a beam of radiation such as a laser (16), to monitor a region, such as a room (12). A camera (14) is used to capture images of part of the room (12), including a path of the laser beam. Particles in the laser beam scatter light (30), and this is captured by the camera (14) for analysis. A processor (20) extracts data relating to the scattered light (30) to determine the density of particles in the beam, to determine the level of smoke in the region. The laser may have a modulated output (38) so that images captured without the laser tuned “on” can be used as a reference point and compared to images taken with the laser turned “on”, to assist in determining the level of scattered light (30) compared to ambient light. Filters (24, 26) may be used to decrease signals generated from background light.