Abstract:
Disclosed herein is a method and system for determining a billing structure for outputting documents using an image processing apparatus. If image data of the document includes color pixels, a billing structure is determined based on an estimated total color pixel count. The color pixels of the image data are counted in a device independent space and the total color pixel count of the image data to be output in a device dependent space is estimated. Based on the estimation, a billing structure is chosen. Processing and determining a billing structure based on image data in the device independent space avoids charging a customer for color print job when only a small amount of color pixels are printed. It also encourages determining charges independently of the marking engine or output device.
Abstract:
Methods for calibrating RF power applied to a plurality of RF coils are provided. In some embodiments, a method of calibrating RF power applied to a first and second RF coil of a process chamber having a power divider to control a first ratio equal to a first magnitude of RF power provided to the first RF coil divided by a second magnitude of RF power provided to the second RF coil, may include measuring a plurality of first ratios over a range of setpoint values of the power divider, comparing the plurality of measured first ratios to a plurality of reference first ratios, and adjusting an actual value of the power divider at a given setpoint value such that the first ratio of the power divider at the given setpoint matches the corresponding reference first ratio to within a first tolerance level.
Abstract:
Methods for calibrating RF power applied to a plurality of RF coils are provided. In some embodiments, a method of calibrating RF power applied to a first and second RF coil of a process chamber having a power divider to control a first ratio equal to a first magnitude of RF power provided to the first RF coil divided by a second magnitude of RF power provided to the second RF coil, may include measuring a plurality of first ratios over a range of setpoint values of the power divider, comparing the plurality of measured first ratios to a plurality of reference first ratios, and adjusting an actual value of the power divider at a given setpoint value such that the first ratio of the power divider at the given setpoint matches the corresponding reference first ratio to within a first tolerance level.
Abstract:
A method for fabricating a semiconductor device includes providing a substrate, forming an amorphous silicon layer over the substrate, forming a heat retaining layer on the amorphous silicon layer, patterning the heat retaining layer, and irradiating the patterned heat retaining layer.
Abstract:
A heat sink layer is formed on portions of a substrate, and then an amorphous silicon layer is formed thereon. The heat coefficient of the sink layer is greater than that of the substrate. When an excimer laser heats the amorphous silicon layer to crystallize the amorphous silicon, nucleation sites are formed in the amorphous silicon layer on the heat sink layer. Next, laterally expanding crystallization occurs in the amorphous silicon layer on the substrate to form polysilicon having a crystal size of a micrometer.
Abstract:
A silicon layer and a heat-retaining layer are formed on a substrate in turn, and a laser beam with a sharp energy density gradient is next utilized to perform a laser heating process for inducing super lateral growth crystallization occurred in part of the Si layer. The heat-retaining layer provides additional heating-enhancement function for the Si layer in crystallization so as to increase the super lateral growth length. Then, the laser beam is repeatedly moved to irradiate the substrate to finish the crystallization process for the full substrate.
Abstract:
A method for crystallizing an amorphous silicon layer is provided. (A) A substrate with an amorphous silicon layer thereon is provided. (B) A mask with a mask pattern is provided. The mask pattern includes a first region pattern and a second region pattern in mirror symmetry. (C) The first region pattern is selected as a first scanning region and the substrate is moved toward a first direction, such that a laser beam passes through the first region pattern to crystallize the amorphous silicon layer along the first direction. (D) The second region pattern is selected as a second scanning region and the substrate is moved toward a second direction, such that the laser beam passes through the second region pattern to crystallize the amorphous silicon layer along the second direction. (E) The steps of (C) and (D) are repeated to convert the whole amorphous silicon layer into a polysilicon layer.
Abstract:
An apparatus (10) and method for sensing a vehicle crash condition includes a transponder (76a) responsive to interrogation signals for providing response signals and a transceiver (70a) for transmitting interrogation signals to the transponder (76a) and receiving response signals from the transponder (76a). The transponder (76a) is affixed to a first structure (36) of the vehicle (12) and the transceiver (70a) is affixed to a second structure (64) of the vehicle (12) at a location spaced apart from the first structure (36). A characteristic of the response signals changes in response to a vehicle crash condition that causes relative movement between the first and second structures (36 and 64). The apparatus (10) also includes a controller (34) for monitoring the received response signals to determine whether a vehicle crash condition is occurring.
Abstract:
A tire parameter sensing system (12) for a vehicle (10) includes a vehicle-based unit (54) and a tire-based unit (34). The tire-based unit (34) is associated with a tire (16) and rotates with the tire. The tire-based unit (34) is located in a communication zone (190) for communicating with the vehicle-based unit (54) through only a portion of each rotation of the tire (16). The tire-based unit (34) senses at least one parameter of the tire (16) and transmits locator signals at predetermined intervals. The vehicle-based unit (54) receives a locator signal that is transmitted while the tire-based unit (34) is located in the communication zone (190) and, in response to receiving the locator signal, transmits a trigger signal to the tire-based unit (34). The tire-based unit (34) is responsive to receipt of the trigger signal for transmitting a parameter signal indicative of the sensed at least one parameter.
Abstract:
An amorphous silicon (a-Si) layer is first formed on a substrate, and the a-Si layer is next patterned to form silicon islands for defining device active regions. Then, a single shot laser beam with long pulse is utilized to irradiate each silicon island, and lateral growth crystallization is induced in each silicon island for transforming a-Si into polycrystalline silicon (poly-Si). Finally, the general subsequent processes for thin film transistor (TFT) fabrication are performed in turn to fabricate poly-Si TFTs.