Abstract:
A power-on reset circuit includes a clamping signal generator and a determining device. The clamping signal generator is adapted to receive a trigger signal, and generates a clamping signal with reference to the trigger signal. The clamping signal generator includes an output unit for generating the clamping signal according to a feedback signal, and a feedback unit for generating the feedback signal according to first and second intermediate signals. The first intermediate signal is generated with reference to the clamping signal. The second intermediate signal is generated according to the trigger signal. The determining device is adapted to receive the trigger signal, is coupled to the clamping signal generator for receiving the clamping signal therefrom, and is operable to generate a reset signal according to the trigger signal and the clamping signal.
Abstract:
The present invention discloses a signal receiving method for determining a transmission format of an input signal and a related signal receiving circuit. The signal receiving method includes: receiving the input signal; generating a signal detecting result corresponding to at least a signal transmission channel of a plurality of signal transmission channels according to an output result of the signal transmission channel; and determining the transmission format of the input signal according to the signal detecting result. The signal receiving circuit includes: an input interface, for receiving an input signal; a detecting module, for generating a signal detecting result corresponding to at least a signal transmission channel of a plurality of signal transmission channels according to an output result of the signal transmission channel; and a determining unit, for determining the transmission format of the input signal according to the signal detecting result.
Abstract:
A power-on reset circuit includes a clamping signal generator and a determining device. The clamping signal generator is adapted to receive a trigger signal, and generates a clamping signal with reference to the trigger signal. The clamping signal generator includes an output unit for generating the clamping signal according to a feedback signal, and a feedback unit for generating the feedback signal according to first and second intermediate signals. The first intermediate signal is generated with reference to the clamping signal. The second intermediate signal is generated according to the trigger signal. The determining device is adapted to receive the trigger signal, is coupled to the clamping signal generator for receiving the clamping signal therefrom, and is operable to generate a reset signal according to the trigger signal and the clamping signal.
Abstract:
Disclosed is an apparatus and method of power-saving and wake-up, which is not only used to reduce the power consumption of a system of electronic equipment, but also allow the system to immediately return to normal operation according to the requirement. The apparatus for power-saving and wake-up includes a first detector, a second detector, a decoder and a third detector. The method for power-saving and wake-up includes detecting a cable signal, a clock pair signal and a differential pair signal. When one of the detected signals is unusual, the system soon turns off the unusual channel power and implement the procedures for power saving and operates under the power saving mode, which can realize the effect of power saving and low power consumption. The method for power-saving and wake-up includes detecting the cable signal, the toggling and frequency of the clock signal and the synchronizing signals of the system.
Abstract:
The present invention relates to an apparatus and a method thereof for generating a clock signal. The apparatus includes a clock generating module and at least one delay stage. The clock generating module receives a reference signal through a first signal path, receives a feedback signal through a second signal path, and provides a clock signal to a third signal path according to the reference signal, wherein the feedback signal corresponds to the clock signal. The at least one delay stage is located on at least one of the first, second, and third signal paths for providing a corresponding delay on the signal path at which the at least one delay stage is positioned.
Abstract:
The invention discloses an analog front end device comprising a band-gap voltage reference circuit and at least one conversion circuit, wherein the conversion circuit includes a clamper, an input buffer, a low-pass filter, a high frequency gain unit and an analog to digital converter. The analog front end device utilize a high frequency gain unit to increase high frequency gain of the image analog signal for increasing the usable number of sampling phase of the image analog signal.
Abstract:
An analog front-end (AFE) circuit of a digital display is disclosed including: a first circuit to intermittently invert a working clock to generate a control signal and to generate a sampling signal, wherein the sampling signal is corresponding to the working clock; a first analog-to-digital converter (ADC) coupled to the first circuit for converting an analog video signal into a first digital video signal according to the sampling signal; a second analog-to-digital converter coupled to the first circuit for converting the analog video signal into a second digital video signal according to the sampling signal; and a first multiplexer for selectively outputting the first digital video signal or the second digital video signal according to the control signal.
Abstract:
A phase-locked loop (PLL) for rapid lock-in applicable to digital, analog, or hybrid digital-analog PLL circuits is provided. Besides the units for basic operation, including a phase-frequency detector (PFD), a charge pump, a loop filter, and/or a voltage/current/digital-controlled oscillator (VCO/ICO/DCO), an additional lock-in actuator circuit is provided for providing lock-in signals, achieving the purpose of rapid lock-in through operational processes.
Abstract:
A chip with an adjustable pinout function is disclosed. The chip includes a first pinout, a second pinout, a logic circuit, and a selecting circuit. The logic circuit includes a first port and a second port. The selecting circuit, which is coupled to the logic circuit, the first pinout, and the second pinout, controls the first pinout to be coupled to the first port or the second port, and controls the second pinout to be coupled to the first port or the second port.
Abstract:
A data transfer interface apparatus and method for controlling data transfer. The data transfer interface apparatus includes a first storage unit for storing an input data according to a first clock and for outputting a first output data according to a second clock, a single-port memory coupled to the first storage unit for storing the first output data according to the second clock and for outputting a second output data according to the second clock, and a second storage unit coupled to the single-port memory for storing the second output data according to the second clock and for outputting a third output data according to a third clock.