Abstract:
A method of making abrasive particles includes: providing a slurry comprising non-colloidal solid particles and a liquid vehicle; forming at least a portion of the slurry into shaped bodies contacting a substrate; at least partially drying the shaped bodies to provide shaped abrasive precursor particles; separating at least a portion of the shaped abrasive precursor particles from the substrate; and converting at least a portion of the shaped abrasive precursor particles into shaped abrasive particles. The shaped abrasive particles comprise alpha alumina having an average crystal grain size of 0.8 to 8 microns and an apparent density that is at least 92 percent of the true density. Each shaped abrasive particle has a respective surface comprising a plurality of smooth sides that form at least four vertexes. Shaped abrasive particles, abrasive articles including them, and methods of using are also disclosed.
Abstract:
Abrasive particles comprising shaped abrasive particles each having a sidewall, each of the shaped abrasive particles comprising alpha alumina and having a first face and a second face separated by a sidewall and having a maximum thickness, T; and the shaped abrasive particles further comprising a plurality of grooves on the second face.
Abstract:
A shaped abrasive agglomerate particle includes a shaped abrasive particle bonded in a siliceous matrix. The siliceous matrix comprises a reaction product of an alkali silicate and a hardener. The abrasive agglomerate particles are useful in abrasive articles. Methods of making the shaped abrasive agglomerate particle and abrading a workpiece are also described.
Abstract:
A multiphase abrasive particle precursor is disclosed. The precursor includes a first phase of a first material with a substantially constant first composition throughout the first phase. The precursor also includes a second phase, of a second material, with a substantially constant composition throughout the second phase. The precursor includes an interface between the first and second phases. The multiphase abrasive particle precursor is a shaped abrasive particle precursor.
Abstract:
A method of making abrasive particles includes: providing a slurry comprising non-colloidal solid particles and a liquid vehicle; forming at least a portion of the slurry into shaped bodies contacting a substrate; at least partially drying the shaped bodies to provide shaped abrasive precursor particles; separating at least a portion of the shaped abrasive precursor particles from the substrate; and converting at least a portion of the shaped abrasive precursor particles into shaped abrasive particles. The shaped abrasive particles comprise alpha alumina having an average crystal grain size of 0.8 to 8 microns and an apparent density that is at least 92 percent of the true density. Each shaped abrasive particle has a respective surface comprising a plurality of smooth sides that form at least four vertexes. Shaped abrasive particles, abrasive articles including them, and methods of using are also disclosed.
Abstract:
A method of making a coated abrasive article includes: depositing precisely-shaped abrasive platelets into precisely-shaped cavities in a production tool; depositing diluent abrasive particles onto the production tool; contacting the precisely-shaped abrasive platelets and the diluent abrasive particles with a curable make layer precursor disposed on a major surface of a backing; separating the tool from the precisely-shaped abrasive platelets and the diluent abrasive particles; and at least partially curing the curable make layer precursor to provide an at least partially cured make layer precursor. Coated abrasive articles preparable by the method are also disclosed.
Abstract:
The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. An abrasive article preform is produced by an additive manufacturing sub-process comprising the deposition of a layer of loose powder particles in a confined region and selective heating via conduction or irradiation to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The abrasive article preform produced by additive manufacturing is subsequently heated to provide the vitreous bond abrasive article comprising the abrasive particles retained in a vitreous bond material, or to provide the metal bond abrasive article. Also, the methods include receiving, by an additive manufacturing device having a processor, a digital object specifying data for an abrasive article, and generating the abrasive article with the manufacturing device.
Abstract:
A method of making abrasive particles includes: providing a slurry comprising non-colloidal solid particles and a liquid vehicle; forming at least a portion of the slurry into shaped bodies contacting a substrate; at least partially drying the shaped bodies to provide shaped abrasive precursor particles; separating at least a portion of the shaped abrasive precursor particles from the substrate; and converting at least a portion of the shaped abrasive precursor particles into shaped abrasive particles. The shaped abrasive particles comprise alpha alumina having an average crystal grain size of 0.8 to 8 microns and an apparent density that is at least 92 percent of the true density. Each shaped abrasive particle has a respective surface comprising a plurality of smooth sides that form at least four vertexes. Shaped abrasive particles, abrasive articles including them, and methods of using are also disclosed.
Abstract:
A coated abrasive article maker apparatus is disclosed comprising a first web path comprising a production tool and a second web path configured for a resin coated backing. The second web path is configured to guide the resin coated backing through the coated abrasive article maker apparatus with the resin layer positioned facing the dispensing surface. An abrasive particle feeder is positioned along the first web path and is configured to dispense abrasive particles onto the dispensing surface such that abrasive particles are removably disposed within cavities of the production tool. Abrasive particles are transferred from the plurality of cavities to the resin layer of the resin coated backing when the production tool is positioned adjacent the resin coated backing.
Abstract:
A shaped abrasive agglomerate particle includes a shaped abrasive particle bonded in a vitreous matrix. The shaped abrasive particles have a longest particle lineal dimension on a surface and a shortest particle dimension perpendicular to the longest particle lineal dimension, and the longest particle lineal dimension is at least twice the shortest particle dimension. The shaped abrasive agglomerate particle has a longest agglomerate lineal dimension on a surface and a shortest agglomerate dimension perpendicular to the longest agglomerate lineal dimension, and the longest agglomerate lineal dimension is at least twice the shortest agglomerate dimension. The abrasive agglomerate particles are useful in abrasive articles. Methods of making the shaped abrasive agglomerate particle and abrading a workpiece are also described.