Abstract:
A method and system for storage address re-mapping in a multi-bank memory is disclosed. The method includes allocating logical addresses in blocks of clusters and re-mapping logical addresses into storage address space, where short runs of host data dispersed in logical address space are mapped in a contiguous manner into megablocks in storage address space. Independently in each bank, valid data is flushed within each respective bank from blocks having both valid and obsolete data to make new blocks available for receiving data in each bank of the multi-bank memory when an available number of new blocks falls below a desired threshold within a particular bank.
Abstract:
Techniques for managing data in a non-volatile memory system (e.g., Flash Memory) are disclosed. A controller can use information relating to a host's file system, which is stored by the host on non-volatile memory, to determine if one or more clusters (or sectors with clusters) are currently allocated. The controller can use the information relating to the host's file system to identify when the host is sending data to the next free cluster and to store such data in a sequential format by copying data from other locations in the non-volatile memory.
Abstract:
Methods and apparatus for writing data to non-volatile memory include maintaining one or more lists of obsolete blocks of the non-volatile memory and limiting the lists to a predetermined value. If a write operation would result in a list exceeding its predetermined value, a block erase operation is performed on one of the obsolete blocks. Valid data contained in an obsolete block selected for erasure is relocated prior to erasure.
Abstract:
A hybrid non-volatile system uses non-volatile memories based on two or more different non-volatile memory technologies in order to exploit their relative advantages. In an exemplary embodiment, the memory system includes a controller and a flash memory, where the controller has a non-volatile RAM based on an alternate technology such as FeRAM. The flash memory is used for the storage of user data and the non-volatile RAM in the controller is used for system control data. The use of an alternate non-volatile memory technology in the controller allows for a non-volatile copy of the most recent control data to be accessed more quickly as it can be updated on a bit by bit basis. In another exemplary embodiment, the alternate non-volatile memory is used as a cache where data can safely be staged prior to its being written to the memory or read back to the host.
Abstract:
The present invention presents a hybrid non-volatile system that uses non-volatile memories based on two or more different non-volatile memory technologies in order to exploit the relative advantages of each these technology with respect to the others. In an exemplary embodiment, the memory system includes a controller and a flash memory, where the controller has a non-volatile RAM based on an alternate technology such as FeRAM. The flash memory is used for the storage of user data and the non-volatile RAM in the controller is used for system control data used by the control to manage the storage of host data in the flash memory. The use of an alternate non-volatile memory technology in the controller allows for a non-volatile copy of the most recent control data to be accessed more quickly as it can be updated on a bit by bit basis. In another exemplary embodiment, the alternate non-volatile memory is used as a cache where data can safely be staged prior to its being written to the to the memory or read back to the host.
Abstract:
Methods and apparatus for writing data to non-volatile memory include maintaining one or more lists of obsolete blocks of the non-volatile memory and limiting the lists to a predetermined value. If a write operation would result in a list exceeding its predetermined value, a block erase operation is performed on one of the obsolete blocks. Valid data contained in an obsolete block selected for erasure is relocated prior to erasure.
Abstract:
A non-volatile memory system is organized in physical groups of physical memory locations. Each physical group (metablock) is erasable as a unit and can be used to store a logical group of data. A memory management system allows for update of a logical group of data by allocating a metablock dedicated to recording the update data of the logical group. The update metablock records update data in the order received and has no restriction on whether the recording is in the correct logical order as originally stored (sequential) or not (chaotic). Eventually the update metablock is closed to further recording. One of several processes will take place, but will ultimately end up with a fully filled metablock in the correct order which replaces the original metablock. In the chaotic case, directory data is maintained in the non-volatile memory in a manner that is conducive to frequent updates. The system supports multiple logical groups being updated concurrently.
Abstract:
A data storage device is provided. A disk device is combined with a non-volatile memory device to provide much shorter write access time and much higher data write speed than can be achieved with a disk device alone. Interleaving bursts of sector writes between the two storage devices can effectively eliminate the effect of the seek time of the disk device. Following a non-contiguous logical address transition from a host system, the storage controller can perform a look-ahead seek operation on the disk device, while writing current data to the non-volatile memory device. Such a system can exploit the inherently faster write access characteristics of a non-volatile memory device, eliminating the dead time normally caused by the disk seek time.
Abstract:
According to a first aspect of the present invention, there is provided a memory system having a controller and a non-volatile memory storing firmware for start up and for normal operation of the system, the controller comprising, a volatile memory; and a processor; wherein the controller is arranged to operate during initialization or configuration of the system so that the start up firmware stored in the non-volatile memory is loaded into the volatile memory under hardware control by the controller and with the processor halted, the start up firmware in the volatile memory being subsequently executed by the processor.
Abstract:
A data system comprising a store (10), a memory (12), a user interface (32) and a memory controller (24) where the memory is used to buffer all data transferred between the user interface and the store, the system being characterized in that the memory controller copies data directly between the store and the memory, whereas the memory controller re-organizes data when the data is transferred between the memory and the user interface.