Abstract:
In a method for error correcting a data signal that is transmitted via a channel and contains data blocks with associated error checking information, the data signal is first equalized, with calculated soft-bit information. In a subsequent step, the error checking information is evaluated with respect to the data block. If the evaluation of the error checking information shows that a single bit error is present in one message bit, the single bit error is corrected only when a condition that is dependent on the soft-bit information is satisfied.
Abstract:
The disclosed invention relates to a process for making a multiphase mixture, comprising: flowing a first fluid stream through a process microchannel, the first fluid stream comprising at least one liquid and/or at least one gas, the process microchannel having an apertured section; flowing a second fluid stream through the apertured section into the process microchannel in contact with the first fluid stream to form the multiphase mixture, the second fluid stream comprising at least one gas and/or at least one microbody-forming material, the first fluid stream forming a continuous phase in the multiphase mixture, the second fluid stream forming a discontinuous phase dispersed in the continuous phase.
Abstract:
A method for channel equalization of received data includes steps of: receiving the received data in a received data packet; calculating filter setting coefficients for an input filter and calculating equalizer setting coefficients for an equalizer; setting the input filter using the filter setting coefficients and setting the equalizer using the equalizer setting coefficients; equalizing the received data using the input filter and using the equalizer; determining channel parameters for the transmission channel from the received data Xk; storing the channel parameters in a data field; and performing the step of calculating the filter setting coefficients for the input filter and calculating the equalizer setting coefficients for the equalizer by performing a GIVENS rotation of the data field.
Abstract:
A robot system includes a primary robot frame including a computerized control module providing control commands for the robot system, the primary robot frame including an outer perimeter. The robot system further includes a plurality of submodules, each submodule capable of being selectively docked with the primary robot frame, the submodules each providing different functionality to the robot system. The submodules, when docked with the primary robot frame, fit within the outer perimeter, enabling the robot system to operate in a closed mode, wherein all movement of the robot system is based upon the outer perimeter.
Abstract:
Provided herein are glucagon superfamily peptides conjugated with NHR ligands that are capable of acting at a nuclear hormone receptor. Also provided herein are pharmaceutical compositions and kits of the conjugates of the invention. Further provided herein are methods of treating a disease, e.g., a metabolic disorder, such as diabetes and obesity, comprising administering the conjugates of the invention.
Abstract:
The application provides a method for partitioning a watermark image with western language characters, comprising: partitioning a western language characters image along rows and columns to form a plurality of character image blocks; identifying valid character image blocks from the formed character image blocks; counting sizes of the valid character image blocks to determine if the image corresponds to a document with a large font size or a document with a small font size; dividing words in the image into a plurality of groups, wherein each divided group in the document with large font size has different numbers of words from that with small font size; and dividing equally the divided word groups into multiple portions corresponding to watermark image blocks. The application further provides a device for partitioning a watermark image with western language characters. The operability of watermark embedding process can be ensured through the above technical solution.
Abstract:
Glucagon analogs are disclosed that exhibit both glucagon antagonist and GLP-1 agonist activity. In one embodiment, the glucagon antagonist/GLP-1 agonist comprises a modified amino acid sequence of native glucagon, in which the first one to five N-terminal amino acids of native glucagon is deleted and in which the alpha helix is stabilized.
Abstract:
Methods and structures are described for determining contact resistivities and Schottky barrier heights for conductors deposited on semiconductor wafers that can be combined with combinatorial processing, allowing thereby numerous processing conditions and materials to be tested concurrently. Methods for using multi-ring as well as single-ring CTLM structures to cancel parasitic resistance are also described, as well as structures and processes for inline monitoring of properties.
Abstract:
The present application provides a screen method for intaglio printing, comprising: dividing multiple classes of regions according to a brightness range; and generating screen dots with various screen patterns for the grouped classes of regions. The present application also provides a screen device for intaglio printing, comprising: a dividing module configured to group multiple classes of regions according to the brightness range; and a generating module configured to generate screen dots with various screen patterns for the grouped classes of regions. Since multiple kinds of screen patterns are applied in the technical solutions in present application, the problem, i.e., water ripple will occur in the prior art, may be addressed, so as to improve the quality of printing.
Abstract:
A process for carrying out at least two unit operations in series, the process comprising the step of: (a) directing a feed stream into an integrated assembly which comprises a first microchannel unit operation upon at least one chemical of the feed stream to generate a distributed output stream that exits the first microchannel unit operation in a first set of discrete microchannels isolating flow through the discrete microchannels; and (b) directing the distributed output stream of the first microchannel unit operation into a second microchannel unit operation as a distributed input stream, to continue isolating flow between the first set of discrete microchannels, and conducting at least one operation upon at least one chemical of the input stream to generate a product stream that exits the second microchannel unit operation, where the first microchannel unit operation and the second unit operation share a housing.