Abstract:
An inverting amplifying circuit for outputting an inversion of an input with good linearity, having an inverter circuit, a feedback capacitance, an input capacitance, a first refresh switch, a second refresh switch, a sleep switch, and a first cutoff switch. A sleep voltage is input through the sleep switch to the inverter circuit for minimizing the electrical power consumption. The sleep switch connects a terminal of the inverter circuit directly to ground when in a sleep mode. The first cut off switch is connected between an output of the inverter circuit and an output of the inverting amplifying circuit.
Abstract:
A .pi./n shift PSK demodulator of this invention is formed with a digital logical means through the following method. XOR4 calculates the ex-OR operation between the present sample through .pi./4 shift QPSK output from SH2 and the previous one output from SH1. Accumulating 1 among the outputs from XOR4 in the first operation means 5 and multiplying it by .pi./8 obtains the absolute phase difference between the present and the previous symbols. The former or latter four bits from SH1 are subtracted from the corresponding former or latter four bits from SH2, and the result of each bit is summed and its sign is added to the absolute phase data in sign addition means 10. After the phase offset is subtracted from the outputs from 10, it is demodulated into the original one in judgment circuit 13.
Abstract:
A communication method and system which can enlarge the communication capacity using a rather simple system. The communication method and system provides different spreading codes to two signal systems at a receiving station.
Abstract:
The present invention solves the conventional problems and has an object to provide a matched filter system of high process in speed, a small size and low electric power consumption. The matched filter circuits of each matched filter set is allocated different n combinations of M/n digits selected from the M length PN code sequence picking one out of every n digits, cyclically performs sampling every 1 chip time duration the input signals to be inputted to each set constructed by matched filter circuits by n sets each of which including n matched filter circuits, and calculates the sum of outputs of all matched filter circuits.
Abstract:
The demodulator has a plurality of matched filters in parallel. Each matched filter has a different binary PN code, a plurality of sample holders, a plurality of multipliers, an adder, and a controller. The sample holders has a common input, a switch, a first capacitor, a first inverse amplifier with an output and an input connected to the common input through the switch and the capacitor, and a first feedback capacitor for feeding the output of the first inverse amplifier back to the input. Each multiplier has a first and second sub-multiplexers, one of sub-multiplexer selecting corresponding sample holder output and another sub-multiplexer selecting a reference voltage.
Abstract:
A filter circuit largely reducing electric power consumption compared with a conventional one, as well as realizing the initial acquisition in high enough speed. In a filter circuit according to the present invention, a matched filter and a sliding correlator are used in parallel; the first acquisition and holding is executed by a matched filter, a correlating operation is executed by a sliding correlator and a voltage supply to the matched filter is stopped.
Abstract:
A complex number calculation circuit for directly multiplying a complex number of an analog signal by a digital complex number as a multiplier. A capacitive coupling is used with a plurality of parallel capacitances corresponding to weights of bits of real and imaginary parts of the multiplier. The sign of the multiplier is represented by selection of output paths. A complex number calculation circuit for calculating approximated absolute values is suitable for an analog architecture. Inverter circuits are used for linear inversion of analog values, and capacitive couplings are used for weighted addition. Analog maximum and minimum circuits with parallel MOSs are used for maximum and minimum calculation.