Abstract:
An amorphous silicon (a-Si) layer is first formed on a substrate, and the a-Si layer is next patterned to form silicon islands for defining device active regions. Then, a single shot laser beam with long pulse is utilized to irradiate each silicon island, and lateral growth crystallization is induced in each silicon island for transforming a-Si into polycrystalline silicon (poly-Si). Finally, the general subsequent processes for thin film transistor (TFT) fabrication are performed in turn to fabricate poly-Si TFTs.
Abstract:
A method of fabricating a thin film transistor (TFT) array involves ion replacement by oxidation-reduction processes for implementing the metal wiring layout of TFT-LCDs. This can overcome metal etching difficulties and achieve automatic alignment. The method of the invention replaces traditional lithographic etching techniciues.
Abstract:
An amorphous silicon layer and at least a heat-retaining layer are formed on a substrate in turn. Wherein, the heat-retaining layer is controlled to have an anti-reflective thickness for reducing the threshold laser energy to effect the melting of the amorphous silicon layer. Then, a laser irradiation process is performed to transform the amorphous silicon layer into a polycrystalline silicon layer. During the laser irratiation process, a portion of the laser energy transmits the heat-retaining layer to effect the melting of the amorphous silicon layer, and another portion of the laser energy is absorbed by the heat-retaining layer.
Abstract:
A method for planarizing polysilicon comprises providing a substrate, forming a dielectric layer on the substrate, forming an amorphous silicon film on the dielectric layer, etching the amorphous silicon film to remove native oxide formed on a surface of the amorphous silicon film, exposing the surface of the amorphous silicon film to a first radiation source to polycrystallize the amorphous silicon film into a polysilicon film, etching the polysilicon film to remove weak bonded silicon formed on a surface of the polysilicon film, and exposing the surface of the polysilicon film to a second radiation source to reflow the polysilicon film.
Abstract:
An amorphous silicon layer is formed on a substrate, and then a protective layer and a reflective layer are formed in turn to form a film stack on portions of the amorphous silicon layer. The reflective layer is a metal material with reflectivity of laser, and the protective layer is able to prevent metal diffusion. When an excimer laser heats the amorphous silicon layer to crystallize the amorphous silicon, nucleation sites are formed in the amorphous silicon layer under the film stack of the protective layer and the reflective layer. Next, laterally expanding crystallization occurs in the amorphous silicon layer to form poly-silicon having crystal grains with size of micrometers and high grain order.
Abstract:
A multi-layered complementary wire structure and a manufacturing method thereof are disclosed, comprising a first wire and a second wire. Each of the first and the second wires comprises a main line and a plurality of branch lines located in a different layer from the main line. A plurality contact holes are formed in an insulating layer between the first wire and the second wire to connect the main line of the first wire and the branch lines of the first wire, and connect the main line of the second wire and the branch lines of the second wire. The main line of the first wire is insulated and crossed with the main line of the second wire. The main line of the first wire and the branch lines of the second wire are insulated with each other and located in the same layer. The main line of the second wire and the branch lines of the first wire are insulated with each other and located in the same layer.
Abstract:
A method of manufacturing a TFT array panel for a LCD disclosers that the gate electrode wiring, transparent conducting electrode, and the first electrode of the storage capacity are formed while the first mask is processing. Then, the selective deposition method is used to process the growth of the first metal wiring. This, therefore, can reduce the numbers of the mask processes. Further, the metal deposition with photo-resist lift-off step is used to implement the layout of the second metal wiring for the consequent transmission lines in the manufacturing process. Finally, the process of the passivation layer deposition is used to implement associated circuits of a TFT array panel for a LCD. The TFT array panel for a LCD for manufacturing circuits can simplify the manufacturing process and reduce the cost.
Abstract:
A photovoltaic module includes a substrate, a plurality of cell sets, a first collecting electrode and a second collecting electrode. The cell sets are disposed on the substrate. Each of the cell sets includes a plurality of cell units, a bottom connecting electrode and an upper connecting electrode. The plurality of cell units are electrically connected to each other in series. The cell units are electrically connected between the bottom connecting electrode and the upper connecting electrode. The first collecting electrode is disposed on the substrate and is electrically connected to the bottom connecting electrode of every cell set. The second collecting electrode is disposed on the substrate and is electrically connected to the upper connecting electrode of every cell set. The second collecting electrode and the cell sets are substantially made of the same layer.
Abstract:
In a capacitance sensing analog circuit of a touch panel sensing circuit, by raising a magnitude of a current flowing through a sensing capacitor to form an amplified sensing capacitance, while sensing the amplified sensing capacitance with the aid of pulse width modulation signals, higher resolution of the original sensing capacitance may thus be achieved. Besides, by using a self-calibrating capacitance sensing circuit on the touch panel sensing circuit, linear errors and DC errors of an output signal of the capacitance sensing analog circuit may be filtered off, and thereby resolution of a capacitance amplifying ratio may be effectively raised so as to relieve errors within the capacitance amplifying ratio caused by noises.
Abstract:
A voltage converter for use in a backlight module stores energy of an input voltage using an inductor and outputs a plurality of output voltages accordingly. The charging path of the inductor is controlled according to the first output voltage so that the first output voltage can be stabilized. The discharging paths from the inductor to other output voltages are controlled according to the differences between other output voltages and the first output voltage so that other output voltages can also be stabilized.