Abstract:
Pattern treatment methods comprise: (a) providing a semiconductor substrate comprising a patterned feature on a surface thereof; (b) applying a pattern treatment composition to the patterned feature, wherein the pattern treatment composition comprises a block copolymer and a solvent, wherein the block copolymer comprises a first block and a second block, wherein the first block comprises a unit formed from a first monomer comprising an ethylenically unsaturated polymerizable group and a hydrogen acceptor group, wherein the hydrogen acceptor group is a nitrogen-containing group, and the second block comprises a unit formed from a second monomer comprising an ethylenically unsaturated polymerizable group and an aromatic group, provided that the second monomer is not styrene; and (c) rinsing residual pattern treatment composition from the substrate, leaving a portion of the block copolymer bonded to the patterned feature. The methods find particular applicability in the manufacture of semiconductor devices for providing high resolution patterns.
Abstract:
Pattern treatment compositions comprise a block copolymer and an organic solvent. The block copolymer comprises a first block and a second block. The first block comprises a unit formed from a first monomer comprising an ethylenically unsaturated polymerizable group and a hydrogen acceptor group, wherein the hydrogen acceptor group is a nitrogen-containing group. The second block comprises a unit formed from a second monomer comprising an ethylenically unsaturated polymerizable group and a cyclic aliphatic group. Wherein: (i) the second block comprises a unit formed from a third monomer comprising an ethylenically unsaturated polymerizable group, and the second monomer and the third monomer are different; and/or (ii) the block copolymer comprises a third block comprising a unit formed from a fourth monomer comprising an ethylenically unsaturated polymerizable group, wherein the fourth monomer is different from the first monomer and the second monomer. Also provided are pattern treatment methods using the described compositions. The pattern treatment compositions and methods find particular applicability in the manufacture of semiconductor devices for providing high resolution patterns.
Abstract:
Pattern shrink methods comprise: (a) providing a semiconductor substrate comprising one or more layers to be patterned; (b) providing a resist pattern over the one or more layers to be patterned; (c) coating a shrink composition over the pattern, wherein the shrink composition comprises a polymer and an organic solvent, wherein the polymer comprises a group containing a hydrogen acceptor effective to form a bond with an acid group and/or an alcohol group at a surface of the resist pattern, and wherein the composition is free of crosslinkers; and (d) rinsing residual shrink composition from the substrate, leaving a portion of the polymer bonded to the resist pattern. Also provided are pattern shrink compositions, and coated substrates and electronic devices formed by the methods. The invention find particular applicability in the manufacture of semiconductor devices for providing high resolution patterns.
Abstract:
Disclosed herein is a block copolymer comprising a first block derived from a vinyl aromatic monomer; where the vinyl aromatic monomer has at least one alkyl substitution on an aromatic ring; a second block derived from a siloxane monomer; where a chi parameter that measures interactions between the first block and the second block is 0.03 to 0.18 at a temperature of 200° C. Disclosed herein is a method comprising polymerizing a vinyl aromatic monomer to form a first block; and polymerizing a second block onto the first block to form a block copolymer; where the second block is derived by polymerizing a siloxane monomer; and where the block copolymer has a chi parameter of 0.03 to 0.18 at a temperature of 200° C.; where the chi parameter is a measure of interactions between the first block and the second block of the copolymer.
Abstract:
Disclosed herein is a block copolymer comprising a first segment and a second segment that are covalently bonded to each other and that are chemically different from each other; where the first segment has a first surface free energy and where the second segment has a second surface free energy; and an additive copolymer; where the additive copolymer comprises a surface free energy reducing moiety where the surface free energy reducing moiety has a lower surface free energy than that of the first segment and the second segment; the additive copolymer further comprising one or more moieties having an affinity to the block copolymer; where the surface free energy reducing moiety is chemically different from the first segment and from the second segment; where the additive copolymer is not water miscible; and where the additive copolymer is not covalently bonded with the block copolymer.
Abstract:
Disclosed herein is an article comprising a substrate; upon which is disposed a composition comprising: a first block copolymer that comprises a first block and a second block; where the first block has a higher surface energy than the second block; a second block copolymer that comprises a first block and a second block; where the first block of the first block copolymer is chemically the same as or similar to the first block of the second block copolymer and the second block of the first block copolymer is chemically the same as or similar to the second block of the second block copolymer; where the first and the second block copolymer have a chi parameter greater than 0.04 at a temperature of 200° C.
Abstract:
Provided are gap-fill methods. The methods comprise: (a) providing a semiconductor substrate having a relief image on a surface of the substrate, the relief image comprising a plurality of gaps to be filled; (b) applying a gap-fill composition over the relief image, wherein the gap-fill composition comprises a self-crosslinkable polymer and a solvent, wherein the self-crosslinkable polymer comprises a first unit comprising a polymerized backbone and a crosslinkable group pendant to the backbone; and (c) heating the gap-fill composition at a temperature to cause the polymer to self-crosslink. The methods find particular applicability in the manufacture of semiconductor devices for the filling of high aspect ratio gaps.
Abstract:
Disclosed herein is a block copolymer comprising a first segment and a second segment that are covalently bonded to each other and that are chemically different from each other; where the first segment has a first surface free energy and where the second segment has a second surface free energy; and an additive copolymer; where the additive copolymer comprises a surface free energy reducing moiety where the surface free energy reducing moiety has a lower surface free energy than that of the first segment and the second segment; the additive copolymer further comprising one or more moieties having an affinity to the block copolymer; where the surface free energy reducing moiety is chemically different from the first segment and from the second segment; where the additive copolymer is not water miscible; and where the additive copolymer is not covalently bonded with the block copolymer.
Abstract:
The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.
Abstract:
A process to form a composition comprising an ethylene/vinylarene multiblock interpolymer, said process comprising polymerizing, in a single reactor, a mixture comprising ethylene, a vinylarene, and optionally an alpha-olefin, in the presence of at least the following a)-c): a) a first metal complex selected from the following Formula (A), as described herein: b) a second metal complex selected from the following Formula (B), as described herein, and c) a chain shuttling agent selected from the following: a dialkyl zinc, a trialkyl aluminum, or a combination thereof. A composition comprising an ethylene/vinylarene multiblock interpolymer comprising at least one polymer structure selected from: -(AR)-(AP)-(AR)-(AP)- (Structure 1), or (AR)-(AP)-(AR)-(AP) (Structure 2); where each (AR) segment independently comprises, in polymerized form, ethylene, >10 mol % of the vinylarene and optionally an alpha-olefin, and wherein each (AP) segment independently comprises, ethylene, optionally ≤10 mol % vinylarene and optionally the alpha-olefin.